FRAME and the Validation Process

Michael Balls and Richard Clothier

FRAME’s historical involvement in the development of the principles of validation, whereby the reliability and relevance of a procedure are established for a specific purpose, and in the practical application of the process, is summarised, and examples of participation in various validation studies on in vitro tests are reviewed. Emphasis is placed on the need for a parallel invalidation process, and on the role of ATLA as a forum for objective reporting and discussion on all aspects of the validation process.
You need to register (for free) to download this article. Please log in/register here.

Integrated Testing Strategies for Toxicity Employing New and Existing Technologies

Robert D. Combes and Michael Balls

We have developed individual, integrated testing strategies (ITS) for predicting the toxicity of general chemicals, cosmetics, pharmaceuticals, inhaled chemicals, and nanoparticles. These ITS are based on published schemes developed previously for the risk assessment of chemicals to fulfil the requirements of REACH, which have been updated to take account of the latest developments in advanced in chemico modelling and in vitro technologies. In addition, we propose an ITS for neurotoxicity, based on the same principles, for incorporation in the other ITS. The technologies are deployed in a step-wise manner, as a basis for decision-tree approaches, incorporating weight-of-evidence stages. This means that testing can be stopped at the point where a risk assessment and/or classification can be performed, with labelling in accordance with the requirements of the regulatory authority concerned, rather than following a checklist approach to hazard identification. In addition, the strategies are intelligent, in that they are based on the fundamental premise that there is no hazard in the absence of exposure — which is why pharmacokinetic modelling plays a key role in each ITS. The new technologies include the use of complex, three-dimensional human cell tissue culture systems with in vivolike structural, physiological and biochemical features, as well as dosing conditions. In this way, problems of inter-species extrapolation and in vitro/in vivo extrapolation are minimised. This is reflected in the ITS placing more emphasis on the use of volunteers at the whole organism testing stage, rather than on existing animal testing, which is the current situation.
You need to register (for free) to download this article. Please log in/register here.

A Critical Evaluation of the 2011 ECHA Reports on Compliance with the REACH and CLP Regulations and on the Use of Alternatives to Testing on Animals for Compliance with the REACH Regulation

Horst Spielmann, Ursula G. Sauer and Ovanes Mekenyan

On 30 June 2011, the European Chemicals Agency published two reports, one on the functioning of the REACH system, the other on the use of alternatives to animal testing in compliance with that system. The data presented are based on information gained during the first registration period under the REACH system, which included high production volume chemicals and substances of very high concern, which have the most extensive information requirements. A total of 25,460 registration dossiers were received, covering 3,400 existing, so-called ‘phase-in’, substances, and 900 new, so-called ‘non-phase-in’, substances. Data sharing and the joint submission of data are reported to have worked successfully. In the registration dossiers for these substances, results from new animal tests were included for less than 1% of all the endpoints; testing proposals (required for ‘higher-tier’ information requirements) were submitted for 711 in vivo tests involving vertebrate animals. The registrants mainly used old, existing experimental data, or options for the adaptation (waiving) of information requirements, before collecting new information. For predicting substance toxicity, ‘read-across’ was the second most-used approach, followed by ‘weight-of-evidence’. In vitro toxicity tests played a minor role, and were only used when the respective test methods had gained the status of regulatory acceptance. All in all, a successful start to the REACH programme was reported, particularly since, in contrast to most predictions, it did not contribute to a significant increase in toxicity testing in animals.
You need to register (for free) to download this article. Please log in/register here.

Is Phenylbutazone a Genotoxic Carcinogen? A Weight-of-Evidence Assessment

Robert D. Combes

Published in silico, in vitro, in vivo laboratory animal and human data, together with information on biotransformation and data from structure–activity analyses with two decision-tree systems (ACToR and Toxtree), have been used in a weight-of-evidence (WoE) assessment to determine whether phenylbutazone (PBZ) is a genotoxic or a non-genotoxic carcinogen. This was undertaken to facilitate the risk assessment of human exposure to this veterinary drug via the consumption of horsemeat from treated animals. Despite problems with data interpretation at all tiers of the database, it was concluded that PBZ behaves like a genotoxic carcinogen with a threshold dose. This conclusion is based mainly on the results of a definitive rodent bioassay, and on the following observations: a) that PBZ has weak in vitro activity only at high concentrations in some genotoxicity assays, accompanied by high levels of cytotoxicity; b) that it (and a major metabolite) is able to cause sister chromatid exchanges in vivo in rodents; and c) that it can induce cytogenetic effects in vivo in humans. It also takes into account the known and predicted activities of the parent drug, some of its metabolites and two structural analogues, and, importantly, several of the drug’s other biochemical effects that are unrelated to toxicity. However, this conclusion is not fully supported by all the evidence, and much of the information is based on old papers. Therefore, more studies are required to establish whether the concentration thresholds seen in vitro would translate to dose thresholds for carcinogenicity, such that a safe dose-level could be defined for the purposes of assessing risk. It was disappointing that a WoE approach to evaluating all of the available hazard data, as is increasingly being advocated to improve the hazard identification paradigm, was unable to provide definitive answers in this case, particularly in view of the large numbers of animals that had been used to provide much of the information.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article