MEIC Evaluation of Acute Systemic Toxicity

Björn Ekwall, Frank A. Barile, Argelia Castano, Cecilia Clemedson, Richard H. Clothie, Paul Dierickx, Barbro Ekwall, Margherita Ferro, Geirid Fiskesjö, Lourdes Garza-Ocañas, Maria José Gómez-Lechón, Michael Gülden, Tony Hall, Boris Isomaa, Anne Kahru, Gustaw Kerszman, Udo Kristen, Manabu Kunimoto, Sirpa Kärenlampi, Lillemor Lewan, Anatoly Loukianov, Tadao Ohno, Guido Persoone, Lennart Romert, Thomas W. Sawyer, Ravi Shrivastava, Helmut Segner, Annalaura Stammati, Noriho Tanaka, Matteo Valentino, Erik Walum and Flavia Zucco

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme was set up to evaluate the relevance for human acute toxicity of in vitro cytotoxicity tests. At the end of the project in 1996, 29 laboratories had tested all 50 reference chemicals in 61 cytotoxicity assays. Five previous articles have presented the in vitro data and the human database to be used in the evaluation. This article presents three important parts of the final evaluation: a) a comparison of rat and mouse oral LD50 with human acute lethal doses for all 50 chemicals; b) a display of the correlations between IC50 (concentration causing 50% inhibition) values from all 61 assays and three independent sets of human acute lethal blood concentrations, i.e. clinical lethal concentrations, forensic lethal concentrations, and peak concentrations; and c) a series of comparisons between average IC50 values from ten human cell line 24-hour assays and human lethal blood concentrations. In the latter comparisons, results from correlations were linked with known human toxicity data for the chemicals, to provide an understanding of correlative results. This correlative/mechanistic approach had the double purpose of assessing the relevance of the in vitro cytotoxicities, and of testing a series of hypotheses connected with the basal cytotoxicity concept. The results of the studies were as follows. Rat LD50 predictions of human lethal dosage were only relatively good (R2 = 0.61), while mouse LD50s gave a somewhat better prediction (R2 = 0.65). Comparisons performed between IC50 values from the 61 assays and the human lethal peak concentrations demonstrated that human cell line tests gave the best average results (R2 = 0.64), while mammalian and fish cell tests correlated less well (R2 = 0.52–0.58), followed by non-fish ecotoxicological tests (R2 = 0.36). Most of the 61 assays underpredicted human toxicity for digoxin, malathion, carbon tetrachloride and atropine sulphate. In the correlative/mechanistic study, the 50 chemicals were first separated into three groups: A = fast-acting chemicals with a restricted passage across the blood–brain barrier; B = slow-acting chemicals with a restricted passage across the blood–brain barrier; and C = chemicals which cross the blood–brain barrier freely, while inducing a non-specific excitation/depression of the central nervous system (CNS). The IC50 values for chemicals in group C were divided by a factor of ten to compensate for a hypothetical extra vulnerability of the CNS to cytotoxicity. Finally, the average human cell line IC50 values (24-hour IC50 for groups A and C, and after 48-hour for group B) were compared with relevant human lethal blood concentrations (peak concentrations for groups A and C, and 48-hour concentrations for group B). As a result, in vitro toxicity and in vivo toxicity correlated very well for all groups (R2 = 0.98, 0.82 and 0.85, respectively). No clear overprediction of human toxicity was made by the human cell tests. The human cell line tests underpredicted human toxicity for only four of the 50 chemicals. These outlier chemicals were digoxin, malathion, nicotine and atropine sulphate, all of which have a lethal action in man through interaction with specific target sites not usually found in cell lines. Potassium cyanide has a cellular human lethal action which cannot be measured by standard anaerobic cell lines. The good prediction of the human lethal whole-blood concentration of this chemical was not conclusive, i.e. was probably a “false good correlation”. Another two chemicals in group C resulted in “false good correlations”, i.e. paracetamol and paraquat. The comparisons thus indicated that human cell line cytotoxicities are relevant for the human acute lethal action for 43 of the 50 chemicals. The results strongly support the basal cytotoxicity concept, and further point to the non-specific CNS depression being the obligatory reaction of humans to cytotoxic concentrations of chemicals, provided that the chemicals are able to pass the blood–brain barrier.
You need to register (for free) to download this article. Please log in/register here.

The Use of Human Keratinocytes in the EU/COLIPA International In Vitro Phototoxicity Test Validation Study and the ECVAM/COLIPA Study on UV Filter Chemicals

Richard Clothier, Angie Willshaw, Helen Cox, Michael Garle, Helen Bowler and Robert Combes

The EU/COLIPA in vitro phototoxicity study involved the testing of 30 chemicals in Phase II, and the ECVAM/COLIPA study on UV filter chemicals involved the testing of 20 chemicals, for which in vivo human and/or animal data were available. Primary human keratinocytes, from four separate male donors, were not found to be sensitive to the 5J/cm2 UVA produced by the SOL500 lamp when assayed by using the neutral red uptake endpoint, as employed with the 3T3 cells used in these international interlaboratory validation studies. The primary human keratinocytes tested in one laboratory alongside the 3T3 fibroblasts gave consistent indications of phototoxicity with all the phototoxicants tested in the Phase II and UV filter studies. The one exception was bithionol, which was predicted to be non-phototoxic in both studies. None of the non-phototoxic chemicals resulted in a positive reaction with the Photoirritation Factor (PIF) version of the prediction model. However, when the Mean Photo Effect (MPE) prediction model version was applied (with a cut-off point of 0.1), one sunscreen agent, octyl salicylate, was deemed to have phototoxic potential. The entire set of negative rated chemicals included in Phase II and in the UV filter study were also rated as non-phototoxic by the MPE prediction model.
You need to register (for free) to download this article. Please log in/register here.

Endocrine Disruptors: A Critical Review of In Vitro and In Vivo Testing Strategies for Assessing Their Toxic Hazard to Humans

Robert D. Combes

Currently, there is much concern that a wide range of both synthetic and naturally occurring environmental chemicals can act as endocrine disruptors (EDs), and can adversely affect humans and wildlife. Many in vivo and in vitro tests have been proposed for screening EDs, and several regulatory agencies, including the US Environmental Protection Agency (EPA), have recommended tier-testing schemes. Unfortunately, most of the proposed toxicity tests have substantial problems, including non-specificity and lack of reproducibility. There is also uncertainty concerning their relevance for generating useful hazard data for risk assessment purposes, in view of the diversity of the possible ED mechanisms of action (for example, receptor binding, steroidogenesis and modulation of the homeostatic processes which regulate endogenous responses to hormones). Moreover, most of the suggested test methods have yet to be validated according to internationally accepted criteria, although the OECD and the US EPA have defined tests for validation, and an interlaboratory “prevalidation” exercise has been initiated by the OECD. All this is compounded by the lack of information regarding human exposure levels to EDs, and a lack of direct evidence for a causal link between exposure and the development of adverse human health effects. In addition, the regulatory testing of EDs has important negative implications for animal welfare, as some of the proposed in vivo tests require large group sizes of animals and stressful procedures. From a detailed analysis of the available published literature, it is concluded that it is impossible to assess the relative values of currently available in vitro and in vivo toxicity tests for EDs, or to recommend any test or test battery. Any plans for the widespread testing of EDs are therefore premature and might be unnecessary, at least for detecting possible human effects. Several recommendations are made for rectifying this unsatisfactory situation, including the postponement of screening programmes pending: a) more information on human exposure; b) further details of the mechanisms of action of EDs; and c) the development of improved tests, followed by their proper scientific validation.
You need to register (for free) to download this article. Please log in/register here.

The ECVAM Prevalidation Study on the Use of EpiDerm for Skin Corrosivity Testing

Manfred Liebsch, Dieter Traue, Christa Barrabas, Horst Spielmann, Patricia Uphill, Susan Wilkins, Janet P. McPherson, Christiane Wiemann, Tanja Kaufmann, Martina Remmele and Hermann-Georg Holzhütter

In 1996 and 1997, ECVAM supported a formal validation study on in vitro methods for predicting skin corrosivity. Two of the in vitro tests included in the study employed human skin models, the Skin2 ZK1350 and EPISKIN models. In the ECVAM validation study, BASF, Huntingdon Life Sciences (HLS) and ZEBET tested the Skin2 human skin model, production of which ceased in October 1996, while the validation study was still in progress. Since both of the skin models had shown basic usefulness for corrosivity testing and, in particular, the EPISKIN corrosivity test had proved to be a scientifically valid test, the three laboratories decided to conduct a study to determine whether another commercially available human skin model, EpiDerm, could also be successfully used to predict skin corrosivity. The study was performed according to the ECVAM prevalidation scheme, to allow for refinement of the test protocol and the prediction model, as well as for independent assessment of the performance of the refined methodology in a final blind trial in the three laboratories. In phase I of the study, ZEBET (Laboratory 1) drafted a Standard Operating Procedure (SOP), including a prediction model (PM1), and the project plan for the study. It was a major task to simplify an existing EpiDerm test protocol, which used the time-course of cytotoxicity as its endpoint. To evaluate the predictivity of the simplified method, which used only a 3-minute exposure to test chemicals, 50 chemicals representing a wide spectrum of chemical entities were tested, revealing that the test sensitivity was too low (65%), whereas the specificity was very high (88%). In addition, acceptance criteria for the negative and positive controls were established. Before proceeding to the next phase of the study, ZEBET distributed a refined SOP, data-recording software and documentation sheets, which allowed Good Laboratory Practice (GLP)-compliant quality assurance for each assay. The main goal of phase II was to produce sufficient data to assess the reproducibility of the EpiDerm skin corrosivity test after transfer to Laboratory 2 (HLS). Repeated testing of several chemicals in both laboratories revealed excellent intralaboratory and interlaboratory reproducibility. In addition, chemicals classified as "non-corrosive" (NC) with a 3-minute exposure in phase I, were re-tested by ZEBET with extended exposure periods of 1 hour and 4 hours. The test sensitivity could be significantly increased, if chemicals classified NC with a 3- minute exposure were tested with a 1-hour exposure. Before proceeding to the final blind trial, a refined SOP was drafted, according to which all chemicals had to be tested with exposure times of 3 minutes and 1 hour, and data for these two exposure times were used in the refined hierarchical prediction model, PM2. In phase III, the blind trial, BASF (Laboratory 3) joined the study. ECVAM selected 24 chemicals from the test chemical set used in the ECVAM skin corrosivity validation study, and BIBRA International (UK) purchased, coded and distributed the chemicals. Each chemical was tested twice, independently, according to the principles of GLP, and coded data were submitted to the Humboldt University (Berlin, Germany) for biostatistical analysis. The analysis revealed that the final test protocol and the refined prediction model (PM2) provided a highly balanced prediction of 88% sensitivity and 86% specificity, which is regarded as the best predictivity an in vitro skin corrosivity test can be expected to achieve. In conclusion, the EpiDerm skin corrosivity test gives an excellent prediction for a wide spectrum of chemicals, and could be used within the context of the new Annex V (EU Dangerous Substances Directive) test method (human skin model assay) for skin corrosion. The results obtained were reproducible, both within and between laboratories, and showed that EpiDerm could be used for testing a wide range of chemicals (both liquids and solids), including organic acids and bases, neutral organics, inorganic acids and bases, electrophiles and phenols. The concordances between the skin corrosivity classifications derived from the in vitro data were very good, and the test was able to distinguish between corrosive and non-corrosive chemicals for all of the chemical types studied
You need to register (for free) to download this article. Please log in/register here.

The Importance of the Prediction Model in the Validation of Alternative Tests

Andrew P. Worth and Michael Balls

An overview is presented of the validation process adopted by the European Centre for the Validation of Alternative Methods, with particular emphasis on the central role of the prediction model (PM). The development of an adequate PM is considered to be just as important as the development of an adequate test system, since the validity of an alternative test can only be established when both components (the test system and the PM) have successfully undergone validation. It is argued, however, that alternative tests and their associated PMs do not necessarily need to undergo validation at the same time, and that retrospective validation may be appropriate when a test system is found to be reliable, but the case for its relevance remains to be demonstrated. For an alternative test to be considered "scientifically valid", it is necessary for three conditions to be fulfilled, referred to here as the criteria for scientific relevance, predictive relevance, and reliability. A minimal set of criteria for the acceptance of any PM is defined, but it should be noted that required levels of predictive ability need to be established on a case-by-case basis, taking into account the inherent variability of the alternative and in vivo test data. Finally, in view of the growing shift in emphasis from the use of standalone alternative tests to alternative testing strategies, the importance of making the PM an integral part of the testing strategy is discussed.
You need to register (for free) to download this article. Please log in/register here.

The Role of ECVAM in Promoting the Regulatory Acceptance of Alternative Methods in the European Union

Andrew P. Worth and Michael Balls

The roles played by the European Centre for the Validation of Alternative Methods (ECVAM) and its advisory committee, the ECVAM Scientific Advisory Committee (ESAC), in the evolution of alternative methods are described. Particular emphasis is given to the process by which ECVAM and the ESAC assess the scientific validities of alternative methods, and, in appropriate cases, initiate the progression of scientifically validated methods toward regulatory acceptance.
You need to register (for free) to download this article. Please log in/register here.

The Neutral Red Release Assay: A Review

Valérie Zuang

The neutral red release (NRR) assay is a cytotoxicity test that can be used to measure the immediate toxic effects of test substances on the cell membrane, resulting in the leaking of intracellular contents. The assay has already been used for several years to evaluate the cytotoxicities of various kinds of products, such as cosmetics, pharmaceuticals, industrial chemicals and household products. It has undergone in-house validation by many companies, and has been found to be particularly useful for identifying substances that are potentially capable of causing adverse reactions on coming into brief contact with the eye or the skin at relatively high concentrations, such as might occur in an adventitious splash into the eye or onto the skin, followed by a quick rinse. Because of the relatively long existence of the NRR assay, its practicality and its proven usefulness for particular purposes, ECVAM decided to review the status of the method, in order to decide whether prevalidation and formal validation studies on the test might be profitable. The review of the status of the test was carried out by performing a comprehensive review of the literature, and by conducting a survey involving companies and institutes with experience in using the test. Both the review and the survey revealed that the assay could provide extremely valuable information when it was used for particular purposes, such as for the evaluation and comparison of immediate toxic effects on the eye or the skin caused by certain products or chemicals such as surfactants. Most of those who responded in the survey favoured a prevalidation/validation study.
You need to register (for free) to download this article. Please log in/register here.

International Cooperation: An Essential Requirement for Replacing Animal Toxicity

Horst Spielmann

The Three Rs concept, which was developed by Russell & Burch in 1959, was implemented into the legal framework in the European Union (EU) for the protection of vertebrate animals used for experimental and other scientific purposes, when Directive 86/609/EEC was adopted in 1986. One focus of activity under this Directive is the use of animals and alternative methods in regulatory testing. To reduce or replace animal testing for regulatory purposes, non-animal tests must be independently validated to prove that they can provide information that is relevant and reliable for hazard prediction in relation to specific types of toxicity in vivo. At the end of the 1980s, no scientific concept existed for the formal validation of in vitro toxicity tests, so a small group of European and American scientists met to develop a set of principles for experimental validation, which were first adopted by ECVAM in Europe in 1995, and, after harmonisation with experts from the USA and Japan, accepted internationally by the OECD in 1996. ECVAM has directly funded a number of validation studies, and a major breakthrough in the year 2000 was the acceptance for regulatory purposes in the EU of cientifically validated in vitro toxicity tests for phototoxic potential and for skin corrosivity. These, and other examples which are discussed, confirm that the internationally harmonised ECVAM/ICCVAM/OECD validation concept is a practical and effective way of making possible the replacement of regulatory testing in animals.
You need to register (for free) to download this article. Please log in/register here.

ECVAM’s Contributions to the Implementation of the Three Rs in the Production and Quality Control of Biologicals

Marlies Halder, Coenraad Hendriksen, Klaus Cussler and Michael Balls

A summary is presented of the activities initiated, and the progress achieved, between April 1993 and December 2001 in implementing the Three Rs in one of the main priority areas of the European Centre for the Validation of Alternative Methods (ECVAM) - the production and quality control of biologicals. These have included organising eight key workshops, and financial contributions to, and sponsorship of, relevant international workshops, symposia and conferences. Noteworthy activities include financial support and/or participation in a number of prevalidation and validation studies. These involved alternative methods for the batch potency testing of: human tetanus vaccines; human and veterinary tetanus antisera and immunoglobulin; rabies vaccines; Leptospira hardjo vaccines; Clostridium perfringens vaccines; and erysipelas vaccines. They also involved a cell culture test for specific toxicity testing of diphtheria toxoid vaccines. In addition, ECVAM funded a study on the use of humane endpoints for vaccine quality control tests involving severe suffering, such as the potency testing of erysipelas, rabies and pertussis vaccines. ECVAM has also contributed financially to the compilation of manuals and expert reports, and to training in test methods. Following the report of an ECVAM Task Force, ECVAM financially supported the prevalidation of some in vitro methods for the potency testing of a recombinant hormone. A proposal is presented for promotion of regulatory acceptance, and suggestions are made for possible future activities.
You need to register (for free) to download this article. Please log in/register here.

Follow-up to the ECVAM Prevalidation Study on In Vitro Tests for Acute Skin Irritation

Valérie Zuang, Michael Balls, Philip A. Botham, Alain Coquette, Emanuela Corsini, Rodger D. Curren, Graham R. Elliott, Julia H. Fentem, Jon R. Heylings, Manfred Liebsch, Jesús Medina, Roland Roguet, Johannes J.M. van de Sandt, Christianne Wiemann and Andrew P. Worth1

The European Centre for the Validation of Alternative Methods (ECVAM) Skin Irritation Task Force was established in 1996, to review the status of the development and validation of alternative tests for skin irritation and corrosion, and to identify appropriate non-animal tests for predicting human skin irritation that were sufficiently well-developed to be prevalidated and validated by ECVAM. The EpiDerm™ method, based on a reconstituted human skin model, was proposed as being sufficiently well advanced to enter a prevalidation (PV) study. Based on a review of test protocols, prediction models (PMs), and data submitted by test developers on ten specified chemicals, with 20% sodium lauryl sulphate as a reference standard, the task force recommended the inclusion of four other tests: EPISKIN™ and PREDISKIN™, based on reconstituted human epidermis or on human skin; the non-perfused pig-ear test, based on pig skin; and
the skin integrity function test (SIFT), with ex vivo mouse skin. The prevalidation study on these methods was funded by ECVAM, and took place during 1999-2000. The outcome of the PV study was that none of the methods was ready to enter a formal validation study, and that the protocols and PMs of the methods had to be improved in order to increase their predictive abilities. Improved protocols and PMs for the EpiDerm and EPISKIN methods, the pig ear test, and the SIFT were presented at an extended Task Force meeting held in May 2001. It was agreed that, in the short term, the performance of the revised and harmonised EpiDerm and EPISKIN methods, as well as the modified SIFT, should be evaluated in a further study with a new set of 20 test chemicals. In addition, it was decided that the SIFT and the pig-ear test would be compared to see if common endpoints (transepidermal water loss, methyl green-pyronine stain) could be identified.
You need to register (for free) to download this article. Please log in/register here.