teratogenicity

/Tag:teratogenicity

Selection of Test Chemicals for the ECVAM International Validation Study on In Vitro Embryotoxicity Tests

Nigel A. Brown

The European Centre for the Validation of Alternative Methods (ECVAM) has sponsored a large international prevalidation and validation study of three embryotoxicity tests, involving embryonic stem cells, limb bud micromass cultures, and post-implantation whole-embryo cultures. The main objective of the study was to assess the performance of these in vitro tests in discriminating between non-embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. An initial part of the study was to select 20 test substances for the formal validation trial, conducted under blind conditions. A database of in vivo and in vitro developmental toxicity test results was compiled on 309 chemicals that had been used in previous validation studies, or suggested for such use, or that had good quality "segment II"-type in vivo data, or for which there were human data. From this database, a shortlist of about 30 candidates was constructed. Because the ECVAM study would not include metabolic activation, chemicals known to require activation for their developmental effects were excluded as candidates, although some known stable metabolites were included. Attempts were made: to include substances of diverse mechanism; to avoid overemphasis on pharmaceuticals; to avoid biologically inert substances as non-embryotoxicants; and to make the list different from those used previously. The candidates were of three categories: Class 3, strongly embryotoxic, was defined as developmentally toxic in all species tested, inducing multiple developmental effects, and with a high A/D ratio. Class 1, non-embryotoxic, was defined as not developmentally toxic at maternally toxic exposures, but which may show some minor embryo/fetal toxicity, which cannot be separated from maternal toxicity. Class 2, weakly embryotoxic, were chemicals of intermediate activity. From this candidate list, chemicals of known receptor (androgen, oestrogen, glucocorticoid, aryl hydrocarbon) mechanisms were excluded, on the basis that simple tests for such activity are already available. In addition, chemicals not freely available were excluded, and an emphasis on human data was applied. The final list of 20 chemicals was: Class 3 - 6-aminonicotinamide , 5-bromo-2´-deoxyuridine, hydroxyurea, methylmercury chloride, methotrexate, all-trans-retinoic acid; Class 2 - boric acid, dimethadione, lithium chloride, methoxyacetic acid, valproic acid (VPA), 2-propyl-4-pentynoic acid (4-yn-VPA), salicylic acid sodium salt; and Class 1 - acrylamide, D-(+)-camphor, dimethyl phthalate, diphenhydramine hydrochloride, 2-ethyl-4-methylpentanoic acid (isobutyl-ethyl-VPA), Penicillin G sodium salt, saccharin sodium hydrate.
You need to register (for free) to download this article. Please log in/register here.

The Detection of Differentiation-inducing Chemicals by using Green Fluorescent Protein Expression in Genetically Engineered Teratocarcinoma Cells

Sarah Adler, Martin Paparella, Cristian Pellizzer, Thomas Hartung and Susanne Bremer

The murine embryonal teratocarcinoma cell line, P19, was genetically manipulated in order to provide preliminary information on compounds that induce differentiation. Without chemical induction, P19 cells remain in an undifferentiated state, but can be induced to differentiate into specific cell types. For example, dimethyl sulphoxide (DMSO) induces cardiac and skeletal muscle differentiation, whereas retinoic acid stimulates neuronal differentiation. P19 cells were transfected with a construct containing a segment of the murineTert (mTert) promoter sequence combined with the green fluorescent protein (GFP) gene, which acts as a reporter gene. mTert expression, the reverse transcriptase component of murine telomerase, is closely linked to telomerase activity and is down-regulated during differentiation. Three retinoids and DMSO induced the differentiation of P19 cells, which was determined by a reduction in mTert_GFP expression, detected by flow cytometry and confocal microscopy as independent methods of detection. A test substance, ethanol, and a control substance, saccharin, did not cause a decrease in mTert_GFP expression. In addition, it could be demonstrated that the mTert_GFP test detects developmentally relevant effects at non-cytotoxic concentrations. The ID50 values derived for the reduction of mTert_GFP expression were lower than the IC50 values detected with the MTT test, by a factor of 21.4 for all-trans retinoic acid, 12.7 for 9-cis retinoic acid, 29.6 for 13-cis retinoic acid, and 8.7 for DMSO. In comparison to the IC50 value for the P19 cell line, a similar IC50 value was obtained with 3T3 cells for ethanol, but there was a 2-fold
increase for DMSO. The retinoids were not cytotoxic to 3T3 cells at the concentrations tested. This newly developed test is capable of detecting differentiation-inducing compounds at non-cytotoxic concentrations within 4 days. It offers a method for detecting chemicals with specific toxicological mechanisms, such as the retinoids, which could provide additional information in embryotoxicity testing as different promoters could be employed. Here, we report the use of this novel test system for the successful analysis of DMSO and three retinoids with different in vivo teratogenic potentials.
You need to register (for free) to download this article. Please log in/register here.

An Evaluation of a Novel Chick Cardiomyocyte Micromass Culture Assay with Two Teratogens/Embryotoxins Associated with Heart Defects

Helena S. Hurst, Richard H. Clothier and Margaret Pratten

This study was aimed at determining whether the chick cardiomyocyte micromass (MM) system could be employed to predict the teratogenicity/embryotoxicity of exogenous chemicals. Two documented teratogens/embryotoxins, sodium valproate (the sodium salt of valproic acid; VPA) and all-trans retinoic acid (tRA), were used in the initial phase of the study. White Leghorn 5-day-old embryo hearts were dissociated to produce a cardiomyocyte suspension in Dulbecco’s Modified Eagle’s Medium. Cultures were incubated at 37°C in 5% CO2 in air, and observations were made every 24 hours over 5 days, for the detection of beating. Culture viability was assessed by using the resazurin reduction assay for determining culture activity and the kenacid blue assay for determining cell number. It was found that tRA significantly reduced cell activity and beating, whilst not affecting total cell number. VPA up to 500μM induced no cytotoxicity in the MM cardiomyocyte cultures, whilst all the VPA concentrations tested reduced beating. The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter functionality, which may result in a teratogenic outcome, whilst not causing cytotoxicity (direct embryotoxicity). This could form part of a screen for developmental toxicity related to cardiac function, whilst limb cultures and brain cultures based on the same system could be relevant to teratogenic effects on those tissues.
You need to register (for free) to download this article. Please log in/register here.