safety assessment

/Tag:safety assessment

Harmonisation of Animal Testing Alternatives in China

Shujun Cheng, Xiaoting Qu and Yao Qin

More and more countries are lining up to follow the EU’s approach and implement a full ban on the sale of cosmetics that have been tested on animals, which has been the case in the EU since 2013. Besides animal welfare considerations, the need for mutual acceptance of data (MAD) and harmonisation of the global market have made the move toward non-animal testing a desirable general trend for countries
worldwide. Over the last 10 years, the concept of alternative methods has been gradually developing in China. This has seen the harmonisation of relevant legislation, the organisation of various theoretical and hands-on training sessions, the exploration of method validation, the adoption of internationally recognised methods, the propagation of alternative testing standards, and an in-depth investigation into the potential use of in vitro methods in the biosciences. There are barriers to this progress, including the demand for a completely new infrastructure, the need to build technology capability, the requirement for a national standardisation system formed through international co-operation, and the lack of technical assistance to facilitate self-innovation. China is now increasing speed in harmonising its approach to the use of non-animal alternatives, accelerating technological development and attempting to incorporate
non-animal, in vitro, testing methods into the national regulatory system.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

Computational Toxicology Approaches at the US Food and Drug Administrationa

Chihae Yang, Luis G. Valerio, Jr and Kirk B. Arvidson

For over a decade, the United States Food and Drug Administration (US FDA) has been engaged in the applied research, development, and evaluation of computational toxicology methods used to support the safety evaluation of a diverse set of regulated products. The basis for evaluating computational toxicology methods is multi-factorial, including the potential for increased efficiency, reduction in the numbers of animals used, lower costs, and the need to explore emerging technologies that support the goals of the US FDA’s Critical Path Initiative (e.g. to make decision support information available early in the drug review process). The US FDA’s efforts have been facilitated by agency-approved data-sharing agreements between government and commercial software developers. This commentary review describes former and current scientific initiatives at the agency, in the area of computational toxicology methods. In particular, toxicology-based QSAR models, ToxML databases and knowledgebases will be addressed. Notably, many of the computational toxicology tools available are commercial products — however, several are emerging as non-commercial products, which are freely-available to the public, and which will facilitate the understanding of how these programs work and avoid the “black box” paradigm. Through productive collaborations, the US FDA Center for Drug Evaluation and Research, and the Center for Food Safety and Applied Nutrition, have worked together to evaluate, develop and apply these methods to chemical toxicity endpoints of regulatory interest.
You need to register (for free) to download this article. Please log in/register here.