respiratory in vitro model

/Tag:respiratory in vitro model

Murine Alveolar Epithelial Cells and Their Lentivirus-mediated Immortalisation

Sandra Sapich, Marius Hittinger, Remi Hendrix-Jastrzebski, Urska Repnik, Gareth Griffiths, Tobias May, Dagmar Wirth, Robert Bals, Nicole Schneider-Daum and Claus-Michael Lehr

In this study, we describe the isolation and immortalisation of primary murine alveolar epithelial cells (mAEpC), as well as their epithelial differentiation and barrier properties when grown on Transwell® inserts. Like human alveolar epithelial cells (hAEpC), mAEpC transdifferentiate in vitro from an alveolar type II (ATII) phenotype to an ATI-like phenotype and exhibit features of the air–blood barrier, such as the establishment of a thin monolayer with functional tight junctions (TJs). This is demonstrated by the expression of TJ proteins (ZO-1 and occludin) and the development of high transepithelial electrical resistance (TEER), peaking at 1800Ω•cm2. Transport across the air–blood barrier, for general toxicity assessments or preclinical drug development, is typically studied in mice. The aim of this work was the generation of novel immortalised murine lung cell lines, to help meet Three Rs requirements in experimental testing and research. To achieve this goal, we lentivirally transduced mAEpC of two different mouse strains with a library of 33 proliferation-promoting genes. With this immortalisation approach, we obtained two murine alveolar epithelial lentivirus-immortalised (mAELVi) cell lines. Both showed similar TJ protein localisation, but exhibited less prominent barrier properties (TEERmax ~250Ω•cm2) when compared to their primary counterparts. While mAEpC demonstrated their suitability for use in the assessment of paracellular transport rates, mAELVi cells could potentially replace mice for the prediction of acute inhalation toxicity during early ADMET studies.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article