pulmonary drug delivery

/Tag:pulmonary drug delivery

Murine Alveolar Epithelial Cells and Their Lentivirus-mediated Immortalisation

Sandra Sapich, Marius Hittinger, Remi Hendrix-Jastrzebski, Urska Repnik, Gareth Griffiths, Tobias May, Dagmar Wirth, Robert Bals, Nicole Schneider-Daum and Claus-Michael Lehr

In this study, we describe the isolation and immortalisation of primary murine alveolar epithelial cells (mAEpC), as well as their epithelial differentiation and barrier properties when grown on Transwell® inserts. Like human alveolar epithelial cells (hAEpC), mAEpC transdifferentiate in vitro from an alveolar type II (ATII) phenotype to an ATI-like phenotype and exhibit features of the air–blood barrier, such as the establishment of a thin monolayer with functional tight junctions (TJs). This is demonstrated by the expression of TJ proteins (ZO-1 and occludin) and the development of high transepithelial electrical resistance (TEER), peaking at 1800Ω•cm2. Transport across the air–blood barrier, for general toxicity assessments or preclinical drug development, is typically studied in mice. The aim of this work was the generation of novel immortalised murine lung cell lines, to help meet Three Rs requirements in experimental testing and research. To achieve this goal, we lentivirally transduced mAEpC of two different mouse strains with a library of 33 proliferation-promoting genes. With this immortalisation approach, we obtained two murine alveolar epithelial lentivirus-immortalised (mAELVi) cell lines. Both showed similar TJ protein localisation, but exhibited less prominent barrier properties (TEERmax ~250Ω•cm2) when compared to their primary counterparts. While mAEpC demonstrated their suitability for use in the assessment of paracellular transport rates, mAELVi cells could potentially replace mice for the prediction of acute inhalation toxicity during early ADMET studies.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

Autologous Co-culture of Primary Human Alveolar Macrophages and Epithelial Cells for Investigating Aerosol Medicines. Part I: Model Characterisation

Marius Hittinger, Julia Janke, Hanno Huwer, Regina Scherließ, Nicole Schneider-Daum and Claus-Michael Lehr

The development of new formulations for pulmonary drug delivery is a challenge on its own. New in vitro models which address the lung are aimed at predicting and optimising the quality, efficacy and safety of inhaled drugs, to facilitate the more rapid translation of such products into the clinic. Reducing the complexity of the in vivo situation requires that such models reproducibly reflect essential physiological factors in vitro. The choice of cell types, culture conditions and the experimental set-up, can affect the outcome and the relevance of a study. In the alveolar space of the lung, epithelial cells and alveolar macrophages are the most important cell types, forming an efficient cellular barrier to aerosols. Our aim was to mimic this barrier with primary human alveolar cells. Cell densities of alveolar macrophages and epithelial cells, isolated from the same human donor, were optimised, with a focus on barrier properties. The combination of 300,000 epithelial cells/cm² together with 100,000 macrophages/cm² showed a functional barrier (transepithelial electrical resistance > 500Ω.cm²). This cell model was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures. The functionality of the in vitro system was investigated with spray-dried fluorescently labelled poly(lactic-co-glycolic) acid particles loaded with ovalbumin as a model drug.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

The Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) In Vitro System: Design and Experimental Protocol

Stephanie Hein, Michael Bur, Tobias Kolb, Bernhard Muellinger, Ulrich F. Schaefer and Claus-Michael Lehr

The development of aerosol medicines typically involves numerous tests on animals, due to the lack of adequate in vitro models. A new in vitro method for testing pharmaceutical aerosol formulations on cell cultures was developed, consisting of an aerosolisation unit fitting a commercial dry powder inhaler (HandiHaler®, Boehringer Ingelheim, Germany), an air-flow control unit (Akita®, Activaero, Germany) and a custom-made sedimentation chamber. This chamber holds three Snapwell® inserts with monolayers of pulmonary epithelial cells. The whole set-up, referred to as the Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system, aims to mimic the complete process of aerosol drug delivery, encompassing aerosol generation, aerosol deposition onto pulmonary epithelial cells and subsequent drug transport across this biological barrier, to facilitate the investigation of new aerosol formulations in the early stages of development. We describe here, the development of the design and the protocol for this device. By testing aerosol formulations of budesonide and salbutamol sulphate, respectively, reproducible deposition of aerosol particles on, and the integrity of, the pulmonary cell monolayer could be demonstrated.
You need to register (for free) to download this article. Please log in/register here.