probabilistic risk assessment

/Tag:probabilistic risk assessment

Species Sensitivity Distribution Estimation from Uncertain (QSAR-based) Effects Data

Tom Aldenberg and Emiel Rorije

In environmental risk assessment, Species Sensitivity Distributions (SSDs) can be applied to estimate a PNEC (Predicted No-Effect Concentration) for a chemical substance, when sufficient data on species toxicities are available. The European Chemicals Agency (ECHA) recommendation is 10 biological species. The question addressed in this paper, is whether QSAR-predicted toxicities can be included in SSD based PNEC estimates, and whether any modifications need to be made to account for the uncertainty in the QSAR-model estimates. This problem is addressed from a probabilistic modelling point of view. From classical analysis of variation (ANOVA), we review how the error-in-data SSD problem is similar to separation into between-group and within-group variance. ECHA guidance suggests averaging similar endpoint data for a species, which is consistent with group means, as in ANOVA. This exercise reveals that error-indata reduces the estimation of the between species variation, i.e. the SSD variance, rather than enlarging it. A Bayesian analysis permits the assessment of the uncertainty of the SSD mean and variance parameters for given values of mean species toxicity error. This requires a hierarchical model. Prototyping this model for an artificial five-species data set seems to suggest that the influence of data error is relatively minor. Moreover, when neglecting this data error, a slightly conservative estimate of the SSD results. Hence, we suggest including (model-predicted) data as model point estimates and handling the SSD as usual. The Bayesian simulation of the error-in-data SSD leads to predictive distributions, being an average of posterior spaghetti plot densities or cumulative distributions. We derive new predictive extrapolation constants with several improvements over previous median uncertainty log10HC5 estimates, in that they are easily calculable from spreadsheet Student-t functions and based on a more realistic uniform prior for the SSD standard deviation. Other advantages are that they are single-number extrapolation constants and they are more sensitive to small sample size.
You need to register (for free) to download this article. Please log in/register here.

Arguments for Considering Uncertainty in QSAR Predictions in Hazard and Risk Assessments

Ullrika Sahlin, Laura Golsteijn, M. Sarfraz Iqbal1 and Willie Peijnenburg

Chemical regulation allows non-in vivo testing (i.e. in silico-derived and in vitro-derived) information to replace experimental values from in vivo studies in hazard and risk assessments. Although non-in vitro testing information on chemical activities or properties is subject to added uncertainty as compared to in vivo testing information, this uncertainty is commonly not (fully) taken into account. Considering uncertainty in predictions from quantitative structure–activity relationships (QSARs), which are a form of non-in vivo testing information, may improve the way that QSARs support chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH) system. We argue that it is useful to consider uncertainty in QSAR predictions, as it: a) supports rational decision-making; b) facilitates cautious risk management; c) informs uncertainty analysis in probabilistic risk assessment; d) may aid the evaluation of QSAR predictions in weight-of-evidence approaches; and e) provides a probabilistic model to verify the experimental data used in risk
assessment. The discussion is illustrated by using case studies of QSAR integrated hazard and risk assessment from the EU-financed CADASTER project.
You need to register (for free) to download this article. Please log in/register here.

Uncertainty in QSAR Predictions

Ullrika Sahlin

It is relevant to consider uncertainty in individual predictions when quantitative structure–activity (or property) relationships (QSARs) are used to support decisions of high societal concern. Successful communication of uncertainty in the integration of QSARs in chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system can be facilitated by a common understanding of how to define, characterise, assess and evaluate uncertainty in QSAR predictions. A QSAR prediction is, compared to experimental estimates, subject to added uncertainty that comes from the use of a model instead of empirically-based estimates. A framework is provided to aid the distinction between different types of uncertainty in a QSAR prediction: quantitative, i.e. for regressions related to the error in a prediction and characterised by a predictive distribution; and qualitative, by expressing our confidence in the model for predicting a particular compound based on a quantitative measure of predictive reliability. It is possible to assess a quantitative (i.e. probabilistic) predictive distribution, given the supervised learning algorithm, the underlying QSAR data, a probability model for uncertainty
and a statistical principle for inference. The integration of QSARs into risk assessment may be facilitated by the inclusion of the assessment of predictive error and predictive reliability into the “unambiguous algorithm”, as outlined in the second OECD principle.
You need to register (for free) to download this article. Please log in/register here.