PBPK

/Tag:PBPK

Body-on-a-Chip Systems for Animal-free Toxicity Testing

Gretchen J. Mahler, Mandy B. Esch, Tracy Stokol, James J. Hickman and Michael L. Shuler

Body-on-a-chip systems replicate the size relationships of organs, blood distribution and blood flow, in accordance with human physiology. When operated with tissues derived from human cell sources, these systems are capable of simulating human metabolism, including the conversion of a prodrug to its effective metabolite, as well as its subsequent therapeutic actions and toxic side-effects. The system also permits the measurement of human tissue electrical and mechanical reactions, which provide a measure of functional response. Since these devices can be operated with human tissue samples or with in vitro tissues derived from induced pluripotent stem cells (iPS), they can play a significant role in determining the success of new pharmaceuticals, without resorting to the use of animals. By providing a platform for testing in the context of human metabolism, as opposed to animal models, the systems have the potential to eliminate the use of animals in preclinical trials. This article will review progress made and work achieved as a direct result of the 2015 Lush Science Prize in support of animal-free testing.
You need to register (for free) to download this article. Please log in/register here.

Physiologically-based Simulation Modelling for the Reduction of Animal Use in the Discovery of Novel Pharmaceuticals

Simon Thomas

The global pharmaceutical industry is estimated to use close to 20 million animals annually, in in vivo studies which apply the results of fundamental biomedical research to the discovery and development of novel pharmaceuticals, or to the application of existing pharmaceuticals to novel therapeutic indications. These applications of in vivo experimentation include: a) the use of animals as disease models against which the efficacy of therapeutics can be tested; b) the study of the toxicity of those therapeutics, before they are administered to humans for the first time; and c) the study of their pharmacokinetics — i.e. their distribution throughout, and elimination from, the body. In vivo pharmacokinetic (PK) studies are estimated to use several hundred thousand animals annually. The success of pharmaceutical research currently relies heavily on the ability to extrapolate from data obtained in such in vivo studies to predict therapeutic behaviour in humans. Physiologically-based modelling has the potential to reduce the number of in vivo animal studies that are performed by the pharmaceutical industry. In particular, the technique of physiologically-based pharmacokinetic (PBPK) modelling is sufficiently developed to serve as a replacement for many in vivo PK studies in animals during drug discovery. Extension of the technique to incorporate the prediction of in vivo therapeutic effects and/or toxicity is less well-developed, but has potential in the longer-term to effect a significant reduction in animal use, and also to lead to improvements in drug discovery via the increased rationalisation of lead optimisation.
You need to register (for free) to download this article. Please log in/register here.

Physiologically-based Pharmacokinetic Modelling for the Reduction of Animal Use in the Discovery of Novel Pharmaceuticals

Simon Thomas

The challenges of physiologically-based pharmacokinetic (PBPK) modelling and approaches to replacing the use of animals, in order to determine drug pharmacokinetics, are discussed. Reference is made to the limitations of in vivo animal studies in drug discovery. In particular, the ways in which animal studies contribute to drug attrition during the post-preclinical phase of testing are considered.
You need to register (for free) to download this article. Please log in/register here.