mathematical models

/Tag:mathematical models

The Automated, Accurate and Reproducible Determination of Steady-state Permeation Parameters from Percutaneous Permeation Data

Frank Niedorf, Elisabeth Schmidt and Manfred Kietzmann

Procedures for the in vitro determination of percutaneous permeation with Franz diffusion cells are widely accepted. However, the calculation of relevant endpoints, such as the steady-state flux (J) and the permeation coefficient (Papp), still depends on visual data inspection or an approximation of the steady-state flux as the maximum observed absorption rate. As both these approaches must be considered inappropriate, an automated and reproducible algorithm to analyse permeation data is presented. The method detects both lag-times and non-linear data resulting from substance accumulation in the acceptor compartment of static diffusion cells. It was evaluated by using simulated data, and data from experiments with caffeine and testosterone on bovine udder skin and human reconstituted epidermis (SkinEthic®), which represent model barriers with high and low barrier strengths, respectively. It was shown that the algorithm is a suitable method for the identification of steady-state ranges in permeation data. If used on data generated with appropriate experimental approaches, it is a reproducible and time-saving alternative to the visual analysis of diffusion data.
You need to register (for free) to download this article. Please log in/register here.

Fish as Research Tools: Alternatives to In Vivo Experiments

Marlien Schaeck, Wim Van den Broeck, Katleen Hermans and Annemie Decostere

The use of fish in scientific research is increasing worldwide, due to both the rapid expansion of the fish farming industry and growing awareness of questions concerning the humane use of mammalian models in basic research and chemical testing. As fish are lower on the evolutionary scale than mammals, they are considered to be less sentient. Fish models are providing researchers, and those concerned with animal welfare, with opportunities for adhering to the Three Rs principles of refinement, reduction and replacement. However, it should be kept in mind that fish should also be covered by the principles of the Three Rs. Indeed, various studies have shown that fish are capable of nociception, and of experiencing pain in a manner analogous to that in mammals. Thus, emphasis needs to be placed on the development of alternatives that replace, as much as possible, the use of all living vertebrate animals, including fish. This review gives the first comprehensive and critical overview of the existing alternatives for live fish experimental studies. The alternative methods described range from cell and tissue cultures, organ and perfusion models, and embryonic models, to in silico computer and mathematical models. This article aspires to guide scientists in the adoption of the correct alternative methods in their research, and, whenever possible, to reduce the use of live fish.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article