kinetics

/Tag:kinetics

EDIT: A New International Multicentre Programme to Develop and Evaluate Batteries of In Vitro Tests for Acute and Chronic Systemic Toxicity

Björn Ekwall, Cecilia Clemedson, Barbro Ekwall, Patrik Ring and Lennart Romert

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme provided a battery of three basal cytotoxicity tests with a good (R2 = 0.77) prediction of human acute lethal blood concentrations. The predictive power of this battery would be considerably improved by the addition of new supplementary in vitro tests. The development of these new tests will be facilitated by a close coupling of test development to evaluation. The Cytotoxicology Laboratory, Uppsala (CTLU), is therefore inviting all interested in vitro toxicologists to take part in the Evaluation-guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT). All EDIT activities (subprojects) will be designed on a case-by-case basis, but will follow a common pattern. The CTLU will use the accumulated MEIC/EDIT data, and its experience from the previous MEIC evaluation, to suggest priority areas, i.e. the need for certain in vitro toxicity data/tests as supplements to existing in vitro models/batteries on human systemic toxicity. Detailed research programmes corresponding to these areas will be published on the Internet. The CTLU will also try to raise funds for some projects and will coordinate multilaboratory studies. Interested laboratories developing or already using priority tests are encouraged to join the subprojects and to test specific sets of substances (usually sets of MEIC reference chemicals) in their new assays. The CTLU will provide adequate human reference data and will also evaluate results as single components of complex models, together with the laboratory conducting the test. At present, ten priority areas have been identified: a) repeat dose toxicity in vitro; b) urgent mechanistic information from in vitro studies of protein denaturation, morphology of cell injury, differential toxicity between various rapidly measured endpoints (10–60 minutes) and 24-hour cytotoxicity, toxicity to aerobic cells, and discrimination between rapid and slow cytotoxic mechanisms; c) in vitro tests on vitally important, specific receptor toxicity in humans; d) excitatory cytotoxicity; e) reversibility of cell toxicity; f) in vitro tests on passage across the blood–brain barrier; g) in vitro tests on absorption in the gut; h) protein binding in vitro; i) in vitro tests on distribution volumes (Vd); and j) in vitro tests on biotransformation to more-toxic metabolites (hepatocytes plus target cells). This paper gives a short presentation of the rationale for each subproject and reports on ongoing activities.
You need to register (for free) to download this article. Please log in/register here.

Development of an In Vitro Test Battery for the Estimation of Acute Human Systemic Toxicity: An Outline of the EDIT Project

Cecilia Clemedson, Marika Nordin-Andersson, Henning F. Bjerregaard, Jørgen Clausen, Anna Forsby, Helena Gustafsson, Ulrika Hansson, Boris Isomaa, Carsten Jørgensen, Ada Kolman, Natalia Kotova, Gunter Krause, Udo Kristen, Kalle Kurppa, Lennart Romert and Ellen Scheers

The aim of the Evaluation-guided Development of New In Vitro Test Batteries (EDIT) multicentre programme is to establish and validate in vitro tests relevant to toxicokinetics and for organ-specific toxicity, to be incorporated into optimal test batteries for the estimation of human acute systemic toxicity. The scientific basis of EDIT is the good prediction of human acute toxicity obtained with three human cell line tests (R2 = 0.77), in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. However, the results from the MEIC study indicated that at least two other types of in vitro test ought to be added to the existing test battery to improve the prediction of human acute systemic toxicity - to determine key kinetic events (such as biotransformation and passage through biological barriers), and to predict crucial organ-specific mechanisms not covered by the tests in the MEIC battery. The EDIT programme will be a case-by-case project, but the establishment and validation of new tests will be carried through by a common, step-wise procedure. The Scientific Committee of the EDIT programme defines the need for a specific set of toxicity or toxicokinetic data. Laboratories are then invited to perform the defined tests in order to provide the "missing" data for the EDIT reference chemicals. The results obtained will be evaluated against the MEMO (the MEIC Monograph programme) database, i.e. against human acute systemic lethal and toxicity data. The aim of the round-table discussions at the 19th Scandinavian Society for Cell Toxicology (SSCT) workshop, held in Ringsted, Denmark on 6-9 September 2001, was to identify which tests are the most important for inclusion in the MEIC battery, i.e. which types of tests the EDIT programme should focus on. It was proposed that it is important to include in vitro methods for various kinetic events, such as biotransformation, absorption in the gut, passage across the blood-brain barrier, distribution volumes, protein binding, and renal clearance/accumulation. Models for target organ toxicity were also discussed. Because several of the outlier chemicals (paracetamol, digoxin, malathion, nicotine, paraquat, atropine and
potassium cyanide) in the MEIC in vivo-in vitro evaluation have a neurotoxic potential, it was proposed that
the development within the EDIT target organ programme should initially be focused on the nervous system.
You need to register (for free) to download this article. Please log in/register here.

The Prediction of Human Acute Systemic Toxicity by the EDIT/MEIC In Vitro Test Battery: The Importance of Protein Binding and of Partitioning into Lipids

Cecilia Clemedson, Paul J. Dierickx and Michael Sjöström

The aim of the two studies presented in this paper was to further improve the predictability of the original Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) in vitro test battery for acute systemic toxicity. In the first study, whether a protein-free cytotoxicity assay could improve the prediction of human acute systemic toxicity was investigated. The cytotoxicity of 39 MEIC reference chemicals was measured by the neutral red uptake inhibition test after 30 minutes in phosphate-buffered saline (PBS), with hepatomaderived Fa32 cells. The results were compared with the corresponding values obtained in complete culture medium, including 10% fetal calf serum. Mercuric chloride and hexachlorophene were much more cytotoxic in PBS, as was the case, to a lesser extent, for seven other chemicals. Potassium cyanide and eight other chemicals were less cytotoxic in PBS than in complete culture medium, probably because of poor physiological conditions. The correlation between the cytotoxicity measured in PBS and human acute toxicity was rather low, but became of the same order as for other assays, when mercuric chloride and hexachlorophene were withdrawn from the comparison. In the second study, modelling of human lethal blood concentrations by using the results of the three cell line tests of the original MEIC test battery were complemented by logP (octanol–water partition coefficient) values. The introduction of logP into the modelling did not improve the correlations, but some improvement of both R2 and Q2 was obtained by expanding the logP values with logP2 values. The highest R2 (0.84) and Q2 (0.80) values were obtained for a model in which both experimental and calculated (ambiguous) logP values were used. When only experimental logP values were used, the corresponding values were 0.80 and 0.78. These two studies showed that including
protein binding and the partition of chemicals in the MEIC in vitro test battery is important, in order to improve the predictability of the results obtained.
You need to register (for free) to download this article. Please log in/register here.