Development of an Innervated Model of Human Skin

Nancy Khammo, Jane Ogilvie and Richard H. Clothier

Neuronal cell responses and interactions with the epithelial and fibroblastic cells of the skin are a key factor in the production in vivo of the irritation/inflammatory response. Currently, few in vitromodels are available that contain dermal, epidermal and the relevant neuronal components. The primary objective of this study was to produce and maintain a 3-D in vitro model of human skin containing these elements. The relevant neuronal component was supplied by adding sensory neurons derived from the dorsal root ganglion (DRG). Since adult neuronal cells do not grow significantly in vivo or in vitro, and since it is very difficult to obtain such cells from humans, it was necessary to employ embryonic rat DRG cells. The ultimate purpose of this model is to improve prediction of the in vivo skin irritancy potential of chemicals and formulations, without the need to use animal models. In addition, this approach has also been applied to the in vitro human eye and bronchial 3-D models being developed in the FRAME Alternatives Laboratory.
You need to register (for free) to download this article. Please log in/register here.

An Evaluation of the Effects of Photoactivation of Bithionol, Amiodarone and Chlorpromazine on Human Keratinocytes In Vitro

Linzi Reid, Nancy Khammo and Richard H. Clothier

Human skin is a continual target for chemical toxicity, due to its constant exposure to xenobiotics. The skin possesses a number of protective antioxidant systems, including glutathione and enzymic pathways, which are capable of neutralising reactive oxygen species (ROS). In combination with certain chemicals, the presence of ROS might augment the levels of toxicity, due to photoactivation of the chemical or, alternatively, due to an oxidatively-stressed state in the skin which exisited prior to exposure to the chemical. Bithionol is a phototoxic anti-parasitic compound. The mechanism of its toxicity and the possible methods of protection from its damaging effects have been explored. The capacity of keratinocytes to protect themselves from bithionol and other phototoxic chemicals has been investigated. In addition, the potential of endogenous antioxidants, such as vitamin C and E, to afford protection to the cells, has been evaluated. The intracellular glutathione stores of HaCaT keratinocytes were reduced following treatment with biothionol. Following photoactivation, both bithionol and chlorpromazine had similar effects, which suggests that glutathione is important in the detoxification pathway of these chemicals. This was confirmed by means of the visual identification of fluorescently-labelled glutathione. Endogenous antioxidants were unable to protect the HaCaT keratinocytes from bithionol toxicity or chlorpromazine phototoxicity. Amiodarone was shown to have no effect on cellular glutathione levels, which suggests that an alternative mechanism of detoxification was occurring in this case. This was supported by evidence of the protection of HaCaT cells from amiodarone phototoxicity via endogenous antioxidants. Thus, it appears that amiodarone toxicity is dependent on the levels of non-gluathione antioxidants present, whilst bithionol and chlorpromazine detoxification relies on the glutathione antioxidant system. This type of approach could indicate the likely mechanisms of phototoxicity of chemicals in vitro, with relevance to potential effects in vivo.
You need to register (for free) to download this article. Please log in/register here.