In Vitro Assessment of Skin Irritation Potential of Surfactant-based Formulations by Using a 3-D Skin Reconstructed Tissue Model and Cytokine Response

Russel M. Walters, Lisa Gandolfi, M. Catherine Mack, Michael Fevola, Katharine Martin, Mathew T. Hamilton, Allison Hilberer, Nicole Barnes, Nathan Wilt, Jennifer R. Nash, Hans A. Raabe and Gertrude-Emilia Costin

The personal care industry is focused on developing safe, more efficacious, and increasingly milder products, that are routinely undergoing preclinical and clinical testing before becoming available for consumer use on skin. In vitro systems based on skin reconstructed equivalents are now established for the preclinical assessment of product irritation potential and as alternative testing methods to the classic Draize rabbit skin irritation test. We have used the 3-D EpiDerm™ model system to evaluate tissue viability and primary cytokine interleukin-1α release as a way to evaluate the potential dermal irritation of 224 non-ionic, amphoteric and/or anionic surfactant-containing formulations, or individual raw materials. As part of our testing programme, two representative benchmark materials with known clinical skin irritation potential were qualified through repeated testing, for use as references for the skin irritation evaluation of formulations containing new surfactant ingredients. We have established a correlation between the in vitro screening approach and clinical testing, and are continually expanding our database to enhance this correlation. This testing programme integrates the efforts of global manufacturers of personal care products that focus on the development of increasingly milder formulations to be applied to the skin, without the use of animal testing.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

Local Tolerance Testing Under REACH: Accepted Non-animal Methods Are Not on Equal Footing with Animal Tests

Ursula G. Sauer, Erin H. Hill, Rodger D. Curren, Susanne N. Kolle, Wera Teubner, Annette Mehling and Robert Landsiedel

In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

Sensory Nerves, Neurogenic Inflammation and Pain: Missing Components of Alternative Irritation Strategies? A Review and a Potential Strategy

Michael J. Garle and Jeffrey R. Fry

The eyes and skin are highly innervated by sensory nerves; stimulation of these nerves by irritants may give rise to neurogenic inflammation, leading to sensory irritation and pain. Few in vitro models of neurogenic inflammation have been described in conjunction with alternative skin and eye irritation methods, despite the fact that the sensory innervation of these organs is well-documented. To date, alternative approaches to the Draize skin and eye irritation tests have proved largely successful at classifying severe irritants, but are generally poor at discriminating between agents with mild to moderate irritant potential. We propose that the development of in vitro models for the prediction of sensory stimulation will assist in the re-classification of the irritant potential of agents that are under-predicted by current in vitro strategies. This review describes the range of xenobiotics known to cause inflammation and pain through the stimulation of sensory nerves, as well as the endogenous mediators and receptor types that are involved. In particular, it focuses on the vanilloid receptor, its activators and its regulation, as these receptors function as integrators of responses to numerous noxious stimuli. Cell culture models and ex vivo preparations that have the potential to serve as predictors of sensory irritation are also described. In addition, as readily available sensory neuron cell line models are few in number, stem cell lines (with the capacity to differentiate into sensory neurons) are explored. Finally, a preliminary strategy to enable assessment of whether incorporation of a sensory component will enhance the predictive power of current in vitro eye
and skin testing strategies is proposed.
You need to register (for free) to download this article. Please log in/register here.

Alternative Methods for Skin Irritation Testing: the Current Status

Philip A. Botham, Lesley K. Earl, Julia H. Fentem, Roland Roguet and Johannes J.M. van de Sandt

The ECVAM Skin Irritation Task Force was established in November 1996, primarily to prepare a report on the current status of the development and validation of alternative tests for skin irritation and corrosion and, in particular, to identify any appropriate non-animal tests for predicting human skin irritation which were sufficiently well-developed to warrant ECVAM supporting their prevalidation/validation. The task force based its discussions around the proposed testing strategy for skin irritation/corrosion emanating from an OECD workshop held in January 1996. The following have been reviewed: a) structure-activity and structure-property relationships for skin corrosion and irritation; b) the use of pH and acid/alkaline reserve measurements in predicting skin corrosivity; c) in vitro tests for skin corrosion; d) in vitro tests for skin irritation (keratinocyte cultures, organ cultures, and reconstituted human skin models); and e) human patch tests for skin irritation. It was apparent that, although several promising candidate in vitro tests for skin irritation (for example, reconstituted human skin methods, and human and animal skin organ culture methods) were under development and evaluation, a test protocol, a preliminary prediction model and supporting data on different types of chemicals were only available for a method employing EpiDermTM. Thus, it is proposed that this EpiDerm test undergoes prevalidation during 1998. In addition, since it was felt preferable to be able to include other in vitro tests in such a prevalidation study, it is recommended that a “challenge” be set to anyone interested in taking part. This involves submitting data on ten test chemicals selected by the task force, obtained according to a standard protocol with a preliminary prediction model, for review by the task force by 31 May 1998.
You need to register (for free) to download this article. Please log in/register here.

Development of an Innervated Model of Human Skin

Nancy Khammo, Jane Ogilvie and Richard H. Clothier

Neuronal cell responses and interactions with the epithelial and fibroblastic cells of the skin are a key factor in the production in vivo of the irritation/inflammatory response. Currently, few in vitromodels are available that contain dermal, epidermal and the relevant neuronal components. The primary objective of this study was to produce and maintain a 3-D in vitro model of human skin containing these elements. The relevant neuronal component was supplied by adding sensory neurons derived from the dorsal root ganglion (DRG). Since adult neuronal cells do not grow significantly in vivo or in vitro, and since it is very difficult to obtain such cells from humans, it was necessary to employ embryonic rat DRG cells. The ultimate purpose of this model is to improve prediction of the in vivo skin irritancy potential of chemicals and formulations, without the need to use animal models. In addition, this approach has also been applied to the in vitro human eye and bronchial 3-D models being developed in the FRAME Alternatives Laboratory.
You need to register (for free) to download this article. Please log in/register here.