in vitro toxicology

/Tag:in vitro toxicology

A Study on UV Filter Chemicals from Annex VII of European Union Directive 76/768/EEC, in the In Vitro 3T3 NRU Phototoxicity Test

Horst Spielmann, Michael Balls, Jack Dupuis, Wolfgang J. W. Pape, Odile de Silva, Hermann-Georg Holzhütter, Frank Gerberick, Manfred Liebsch, Will W. Lovell and Uwe Pfannenbecker

In 1996, the Scientific Committee on Cosmetology of DGXXIV of the European Commission asked the European Centre for the Validation of Alternative Methods to test eight UV filter chemicals from the 1995 edition of Annex VII of Directive 76/768/EEC in a blind trial in the in vitro 3T3 cell neutral red uptake phototoxicity (3T3 NRU PT) test, which had been scientifically validated between 1992 and 1996. Since all the UV filter chemicals on the positive list of EU Directive 76/768/EEC have been shown not to be phototoxic in vivo in humans under use conditions, only negative effects would be expected in the 3T3 NRU PT test. To balance the number of positive and negative chemicals, ten phototoxic and ten non-phototoxic chemicals were tested under blind conditions in four laboratories. Moreover, to assess the optimum concentration range for testing, information was provided on appropriate solvents and on the solubility of the coded chemicals. In this study, the phototoxic potential of test chemicals was evaluated in a prediction model in which either the Photoirritation Factor (PIF) or the Mean Photo Effect (MPE) were determined. The results obtained with both PIF and MPE were highly reproducible in the four laboratories, and the correlation between in vitro and in vivo data was almost perfect. All the phototoxic test chemicals provided a positive result at concentrations of 1µg/ml, while nine of the ten non-phototoxic chemicals gave clear negative results, even at the highest test concentrations. One of the UV filter chemicals gave positive results in three of the four laboratories only at concentrations greater than 100µg/ml; the other laboratory correctly identified all 20 of the test chemicals. An analysis of the impact that exposure concentrations had on the performance of the test revealed that the optimum concentration range in the 3T3 NRU PT test for determining the phototoxic potential of chemicals is between 0.1µg/ml and 10µg/ml, and that false positive results can be obtained at concentrations greater than 100µg/ml. Therefore, the positive results obtained with some of the UV filter chemicals only at concentrations greater than 100µg/ml do not indicate a phototoxic potential in vivo. When this information was taken into account during calculation of the overall predictivity of the 3T3 NRU PT test in the present study, an almost perfect correlation of in vitro versus in vivo results was obtained (between 95% and 100%), when either PIF or MPE were used to predict the phototoxic potential. The management team and participants therefore conclude that the 3T3 NRU PT test is a valid test for correctly assessing the phototoxic potential of UV filter chemicals, if the defined concentration limits are taken into account.
You need to register (for free) to download this article. Please log in/register here.

Selective Induction of Interleukin-12 in Reconstructed Human Epidermis by Chemical Allergens

Emanuela Corsini, Elena Limiroli, Marina Marinovich, Catherine
Cohen, Roland Roguet and Corrado L. Galli

Keratinocytes play an important role in skin inflammatory and immunological reactions through the release of cytokines and response to them. These cells have been shown to direct T-cell priming by producing cytokines such as interleukin (IL)-10 and IL-12. The purpose of this work was to explore the potential use of IL-12 production to discriminate between skin irritants and contact allergens in vitro. Initially, a reconstituted human epidermis was treated with a known human skin irritant, sodium lauryl sulphate (SLS), and a known human contact allergen, 1-chloro-2,4-dinitrobenzene (DNCB). The expression of IL-12p40 was assessed at specific time intervals by the semi-quantitative reverse transcriptase-polymerase chain reaction (rt-PCR). The data obtained indicated that only DNCB induced an up-regulation of IL-12p40. This up-regulation occurred after exposure to DNCB for 3 hours. Importantly, the application of SLS or vehicles did not induce IL-12 mRNA up-regulation. An increase in total IL-12 protein content was detected in supernatants of allergen-stimulated, but not vehicle-stimulated, reconstituted epidermis. To confirm these results, the effects of benzalkonium chloride, oxazolone and eugenol were assessed. At concentrations that resulted in equivalent IL-1α release, only contact allergens increased IL-12 expression, which confirmed the previous results. These data suggest that IL-12, which is crucial for T-helper type 1 cell responses, could be a useful marker for discriminating between contact allergens and irritants.
You need to register (for free) to download this article. Please log in/register here.

The ECVAM International Validation Study on In Vitro Embryotoxicity Tests: Results of the Definitive Phase and Evaluation of Prediction Models

Elke Genschow, Horst Spielmann, Gabriele Scholz, Andrea Seiler, Nigel Brown, Aldert Piersma, Madeleine Brady, Nicole Clemann, Hannele Huuskonen, Francoise Paillard, Susanne Bremer and Klaus Becker

From 1996 to 2000, ZEBET (Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments at the BgVV, Berlin, Germany) coordinated the European Centre for the Validation of Alternative Methods (ECVAM) prevalidation and validation study on three embryotoxicity tests: a) a test employing embryonic stem cell lines (EST); b) the micromass (MM) test; and c) the postimplantation rat whole-embryo culture assay (WEC test). The main objectives of the study were to assess the performance of these three in vitro tests in discriminating between non-embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. Phase I of the study (1997) was designed as a prevalidation phase, for test protocol optimisation, and for the establishment of a comprehensive database of in vivo and in vitro data on embryotoxic compounds. Phase II (1998-2000) involved a formal validation trial, conducted under blind conditions on 20 test compounds selected from the database, which were coded and distributed to the participating laboratories. In the preliminary phase of the validation study, six chemicals out of the 20, which showed embryotoxic potential, were tested. These results were used to define new biostatistically based prediction models (PMs) for the MM and WEC tests, and to evaluate those developed previously for the EST. As a next step, the PMs were evaluated by using the results for the remaining 14 chemicals of the definitive phase of the validation study. The three in vitro embryotoxicity tests proved to be applicable to testing a diverse group of chemicals with different embryotoxic potentials (non-embryotoxic, weakly embryotoxic, and strongly embryotoxic). The reproducibility of the three in vitro embryotoxicity tests were acceptable according to the acceptance criteria defined by the Management Team. The concordances between the embryotoxic potentials derived from the in vitro data and from the in vivo data were good for the EST and the WEC (PM2) test, and sufficient for the MM test and the WEC (PM1) tests according to the performance criteria defined by the Management Team before the formal validation study. When applying the PM of the EST to the in vitro data obtained in the definitive phase of the formal validation study, chemicals were classified correctly in 78% of the experiments. For the MM and the WEC tests, the PMs provided 70% and 80% (PM2) correct classifications, respectively. And, very importantly, an excellent predictivity (100%, except for PM1 of the WEC test, with 79%, considered as good) was obtained with strongly embryotoxic chemicals in each of the three in vitro tests.
You need to register (for free) to download this article. Please log in/register here.

Long-term In Vitro Toxicity Models: Comparisons Between a Flow-cell Bioreactor, a Static-cell Bioreactor and Static Cell Cultures

Patricia Pazos, Salvador Fortaner and Pilar Prieto

In vitro long-term toxicity testing is becoming an important issue in the field of toxicology, and there is a need to develop new model systems that mimic human chronic exposure and its effects. The aim of this work was to test two long-term in vitro toxicity systems which are available, a flow-cell bioreactor (Tecnomouse) and a static cell bioreactor system (CELLine CL 6-well), and to compare them with the use of conventional cell culture flasks. A human cell line, Int 407, was exposed to cadmium chloride (CdCl2; 10-7-10-8M) for 4 weeks. Cell numbers and cell viabilities were determined by the trypan blue (TB) exclusion assay and from exclusion of propidium iodide (PI) as determined by flow cytometry; and cell viability and metabolic activity were determined by the MTT assay. In addition, total protein determination and cadmium uptake measurements were performed. The results obtained with TB and PI exclusion did not show clear differences in cell viability with increasing CdCl2 concentration. However, in the static cell-culture systems, an increase in MTT reduction was found at low concentrations of CdCl2. Expression of heatshock protein (Hsp27 and Hsp70) increased differently, depending on the CdCl2 concentration applied and the system used. In summary, of the two bioreactors, the CELLine CL 6-well bioreactor was shown to be the more efficient system for performing long-term cytotoxicity studies. It is easy to handle, it permits the assessment of several endpoints, and sufficient replicates can be made available.
You need to register (for free) to download this article. Please log in/register here.

Human Hepatic Cell Cultures: In Vitro and In Vivo Drug Metabolism

María José Gómez-Lechón, Teresa Donato, Xavier Ponsoda and José V. Castell

Drug metabolism is the major determinant of drug clearance, and the factor most frequently responsible for inter-individual differences in drug pharmacokinetics. The expression of drug metabolising enzymes shows significant interspecies differences, and variability among human individuals (polymorphic or inducible enzymes) makes the accurate prediction of the metabolism of a new compound in humans difficult. Several key issues need to be addressed at the early stages of drug development to improve drug candidate selection: a) how fast the compound will be etabolised; b) what metabolites will be formed (metabolic profile); c) which enzymes are involved and to what extent; and d) whether drug metabolism will be affected directly (drug–drug interactions) or indirectly (enzyme induction) by the administered compound. Drug metabolism studies are routinely performed in laboratory animals, but they are not sufficiently accurate to predict the metabolic profiles of drugs in humans. Many of these issues can now be addressed by the use of relevant human in vitro models, which speed up the selection of new candidate drugs. Human hepatocytes are the closest in vitro model to the human liver, and they are the only model which can produce a metabolic profile of a drug which is very similar to that found in vivo. However, the use of human hepatocytes is restricted, because limited access to suitable tissue samples prevents their use in high throughput screening systems. The pharmaceutical industry has made great efforts to develop fast and reliable in vitro models to overcome these drawbacks. Comparative studies on liver microsomes and cells from animal species, including humans, are very useful for demonstrating species differences in the metabolic profile of given drug candidates, and are of great value in the judicious and justifiable selection of animal species for later pharmacokinetic and toxicological studies. Cytochrome P450 (CYP)-engineered cells (or microsomes from CYP-engineered cells, for example, Supersomes) have made the identification of the CYPs involved in the metabolism of a drug candidate more straightforward and much easier. However, the screening of compounds acting as potential CYP inducers can only be conducted in cellular systems fully capable of transcribing and translating CYP genes.
You need to register (for free) to download this article. Please log in/register here.

ECVAM’s Response to the Changing Political Environment for Alternatives: Consequences of the European Union Chemicals and Cosmetics Policies

Thomas Hartung, Susanne Bremer, Silvia Casati, Sandra Coecke, Raffaella Corvi, Salvador Fortaner, Laura Gribaldo, Marlies Halder, Annett Janusch Roi, Pilar Prieto, Enrico Sabbioni, Andrew Worth and Valerie Zuang

The European Centre for the Validation of Alternative Methods (ECVAM) has restructured its services by directly targeting the animal tests that need to be replaced. In view of the short time-lines for making available and implementing validated methods, ECVAM is offering to steer the process by bringing together the inputs of stakeholders and encouraging the early involvement of regulators. In essence, steering groups formed by ECVAM senior staff, and complemented with external experts, will carry out the project management and will coordinate the various inputs.
You need to register (for free) to download this article. Please log in/register here.

SDose–Response and Thresholds in Mutagenicity Studies: A Statistical Testing Approach

Ludwig A. Hothorn and Frank Bretz

The analysis of dose–response relationships is an important objective in toxicology, and one in which both modelling and testing approaches are used. One particular question is whether a threshold exists at low doses. The concept of a pragmatic threshold is used, i.e. low doses with biologically unimportant effects are assumed to be threshold doses. “Biologically unimportant” means, in statistical terms, a lower effect than the effect of the negative control, or at least a just-tolerable margin δ higher than the effect of the negative control. Therefore, threshold doses can be tested in terms of a one-sided hypothesis of equivalence. A new approach is proposed, assuming, at the least, that the low dose is a threshold dose, and the highest dose is superior to the negative control. By analogy to the k-fold rule commonly used in mutagenicity studies, tests on ratio-to-control are used. The a priori definition of the threshold margin is inherently needed. A further approach proposes the analysis of dose–response relationships by means of order-restricted inference (the so-called trend test). A modification of a multiple-contrast test is used, in which only those contrasts are included that are sensitive for no effects at low doses. A further modification treats the complicated, but real, problem of simultaneous existence of a threshold, a monotonic increase, and a downturn effect at high dose(s). A parametric procedure is considered, together with an extension for proportions. The important problem of a priori sample size definition is discussed. The approaches are demonstrated by means of examples based on real data.
You need to register (for free) to download this article. Please log in/register here.

Validation of the Embryonic Stem Cell Test in the International ECVAM Validation Study on Three In Vitro Embryotoxicity Tests

Elke Genschow, Horst Spielmann, Gabriele Scholz, Ingeborg Pohl, Andrea Seiler, Nicole Clemann, Susanne Bremer and Klaus Becker

A detailed report is presented on the performance of the embryonic stem cell test (EST) in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the EST can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.
You need to register (for free) to download this article. Please log in/register here.

Validation of the Rat Limb Bud Micromass Test in the International ECVAM Validation Study on Three In Vitro Embryotoxicity Tests

Horst Spielmann, Elke Genschow, Nigel A. Brown, Aldert H. Piersma, Aart Verhoef, Marielle Q.I. Spanjersberg, Hannele Huuskonen, Francoise Paillard and Andrea Seiler

A detailed report is presented on the performance of the rat limb bud micromass (MM) test in a European Centre for the Evaluation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects on animals and/or humans, were tested in four laboratories. The outcome showed that the MM test is an experimentally validated test, which holds promise for use for identifying strongly embryotoxic chemicals, but which needs to be improved before it can be recommended for use for regulatory purposes.
You need to register (for free) to download this article. Please log in/register here.

Validation of the Postimplantation Rat Whole-embryo Culture Test in the International ECVAM Validation Study on Three In Vitro Embryotoxicity Tests

Aldert H. Piersma, Elke Genschow, Aart Verhoef, Marielle Q.I. Spanjersberg, Nigel A. Brown, Madeleine Brady, Angie Burns, Nicole Clemann, Andrea Seiler and Horst Spielmann

A detailed report is presented on the performance of the postimplantation rat whole-embryo culture (WEC) test in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the WEC test can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.
You need to register (for free) to download this article. Please log in/register here.