Evaluation of a Commercial Kit for Glutathione Estimation in Cellular Systems

Mukadder Atmaca, Alison H. Hammond and Jeffrey R. Fry

The major aim of this study was to identify an appropriate assay to use routinely for cellular glutathione measurement. The Saville assay has been widely used in cytotoxicity studies, while the GSH-400 assay is a commercial kit which only recently became available. Therefore, in this study, the accuracy and sensitivity of the Saville and GSH-400 assays were compared. Results presented herein indicate that the Saville assay gave a lower blank absorbance and higher sensitivity when compared to the GSH-400 assay.
You need to register (for free) to download this article. Please log in/register here.

Cytotoxicity of Amino Alcohols to Rat Hepatoma-derived Fa32 Cells

Ellen M. Scheers, Anna Forsby and Paul J. Dierickx

Amino alcohols are used as emulsifying agents in dry-cleaning soaps, wax removers, cosmetics, paints and insecticides. The cytotoxicities of 12 amino alcohols, which differed in chain length, position of the amino and alcohol groups, and the presence of an additional phenyl group, were determined by the neutral red uptake inhibition assay with normally cultured, glutathione-depleted or antioxidant-enriched Fa32 rat hepatoma-derived cells. Glutathione depletion and antioxidant enrichment were achieved by including 50μM L-buthionine-S,R-sulphoximine (BSO) or 100μM α-tocopherol acetate (vitamin E) in the culture medium for 24 hours before and during the assay. The cytotoxicity of the amino alcohols observed after treatment for 24 hours was expressed as the concentration of compound needed to induce a 50% reduction in neutral red uptake (NI50). The observed NI50 values ranged from 3mM to 30mM. The individual stereoisomers and a racemic mixture of 1-amino-2-propanol exhibited similar cytotoxicities (with normally cultured Fa32 cells, and vitamin E- and BSO-treated cultures). Similar NI50 values for D-(+)-2-amino-1-propanol, 3-amino-1-propanol and the L-, D- or DL- forms of 1-amino-2-propanol, indicated that the position of the amino group had little influence on the cytotoxicities of the amino alcohols. In contrast, the position of the hydroxyl group appeared to play an important role for the toxicity of the compound, as indicated by the significantly different NI50 values for 4-amino-1-butanol and 4-amino-2-butanol. An additional phenyl group greatly increased the cytotoxicity of 2-amino-1,3-propanediol. For most of the compounds, cytotoxicity increased when GSH was depleted, and decreased when the cells were enriched with vitamin E. This indicated that most of the tested chemicals interact with GSH, either directly or indirectly, by processes which generate oxygen free-radicals. Decreased toxicity was found for most of the chemicals administered to vitamin E-enriched cells, indicating that reactive oxygen species could be involved in the toxicity of the amino alcohols.
You need to register (for free) to download this article. Please log in/register here.

Cytotoxicity of the Dicarboximide Fungicides, Vinclozolin and Iprodione, in Rat Hepatoma-derived Fa32 cells

Paul J. Dierickx

Dicarboximide fungicides are widely used to control various fungal species. Their primary action is not known, due to a lack of knowledge concerning the mechanism of action of the dicarboximide group. The cytotoxicities of vinclozolin and iprodione in rat hepatoma-derived Fa32 cells were investigated. Cytotoxicity was measured by neutral red uptake inhibition after treatment for 24 hours. Iprodione was more toxic than vinclozolin. Vinclozolin was less toxic in glutathione-depleted cells than in control cells. This was also true for iprodione at lower concentrations, but iprodione became more toxic at higher concentrations. Both the fungicides increased the endogenous glutathione content by 20% after 1 hour. After 24 hours, the glutathione content was doubled by vinclozolin, but was not affected by iprodione. No effect on glutathione S-transferase activity or reactive oxygen species formation could be observed. Cytochrome P450-dependent ethoxyresorufin-O-deethylase and pentoxyresorufin-O-depentylase activities were moderately activated by iprodione and strongly activated by vinclozolin. A glutathione-related cytochrome P450-dependent metabolic attack of vinclozolin and iprodione could be responsible for their cytotoxicity in Fa32 cells. Further research is needed to fully elucidate these (or other) mechanisms.
You need to register (for free) to download this article. Please log in/register here.

Cyclosporin A Potentiates the Cytotoxic Effects of Methyl Methanesulphonate in HL-60 and K562 Cells

Petr Mlejnek, Ivo Frydrych and Petr Dolez∨el

Methyl methanesulphonate (MMS) is a DNA damaging agent, which induces oxidative stress, ATP depletion, and consequently, cell death, in HL-60 and K562 cells. The cell death induced by MMS predominantly exhibited the morphological and biochemical hallmarks of necrosis. A minor population of dying cells exhibited apoptotic hall marks, especially in K562 cell cultures. Cyclosporin A (CsA) was used to modulate the MMS-induced cell death. Our results indicated that CsA did not prevent cells from dying, but changed the mode of death from necrotic to apoptotic. Surprisingly, CsA enhanced oxidative stress and increased the overall number of dead cells. Based on these results, we conclude that the modulatory effect of CsA on MMS-induced cell death might arise from an interference by CsA with mitochondrial metabolism, rather than from inhibition of the MMS efflux mediated by P–glycoprotein.
You need to register (for free) to download this article. Please log in/register here.

The Response of a Co-culture Lung Model to Fine and Ultrafine Particles of Incinerator Fly Ash at the Air–liquid Interface

Silvia Diabaté, Sonja Mülhopt, Hanns-Rudolf Paur and Harald F. Krug

Elevated concentrations of particulate matter in the environmental atmosphere constitute a potential risk to human health. In vitro cell-based assays are therefore necessary to evaluate the toxicological potential of inhaled particulate emissions. In this study, the exposure of a co-culture cell model at the air–liquid interface was used to evaluate the dose-dependent biological effects of a test aerosol. The CULTEX ® system was used to expose human cells to an environmentally-relevant aerosol, generated from fly ash collected in a commercial municipal waste incinerator and resuspended in filtered air. Human bronchial epithelial cells, BEAS-2B, co-cultured with differentiated THP-1 macrophages growing on Transwell® inserts, were employed in the bioassay. Analyses of cell viability, interleukin-8 (IL-8) release, intracellular glutathione, and haeme oxygenase-1 enzyme expression were performed. Transportation of the cells and exposure to humidified filtered air or the test aerosol, at 100ml/min for 1 to 6 hours, were well tolerated by the cells and had no effect on their viability. Levels of IL-8 release and haeme oxygenase-1 expression were elevated by exposure to fly ash aerosol as a function of time, but not by exposure to clean air. For IL-8 release, a dose-dependent effect was demonstrated with the assumption that the deposited mass of the particles correlated with exposure time. Exposure to the test aerosol did not affect the intracellular glutathione concentration. This in vitro approach simulates particle deposition in the human lung more realistically than does submerged exposure, and it preserves the inherent properties of the particles. It shows promise for use to detect particulate emissions which are potentially detrimental to human health.
You need to register (for free) to download this article. Please log in/register here.