Local Tolerance Testing Under REACH: Accepted Non-animal Methods Are Not on Equal Footing with Animal Tests

Ursula G. Sauer, Erin H. Hill, Rodger D. Curren, Susanne N. Kolle, Wera Teubner, Annette Mehling and Robert Landsiedel

In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required.

This article is currently only available in full to paid subscribers. Click here to subscribe, or you will need to log in/register to buy and download this article

An Animal Protection Sponsor’s View of MEIC

Ethel Thurston

The Multicenter Evaluation of In Vitro Cytotoxicity programme is most important to animal protection, since it has validated 64 in vitro tests using advanced human data for 50 chemicals as the “gold standard”. Therefore, it has been able to compare animal cell tests, human cell tests and whole-animal tests fairly with unbiased scientific evidence. Added bonuses have included the identification and development of missing in vitro information (“missing tests”), publication of time-related lethal blood concentrations for all 50 chemicals, and some preliminary plans to resolve the 50,000 untested (or poorly tested) chemicals in the chemical mountain.
You need to register (for free) to download this article. Please log in/register here.

MEIC Evaluation of Acute Systemic Toxicity

Björn Ekwall, Cecilia Clemedson, Balcarras Crafoord

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme was set up to evaluate the relevance for acute human systemic toxicity of in vitro cytotoxicity tests. At the end of the programme in the summer of 1996, 29 laboratories had tested all 50 reference chemicals in 61 cytotoxicity assays. As a necessary prerequisite to the forthcoming evaluation papers of this series, this paper presents the animal and human toxicity data of the programme. This database contains tabulated handbook data for the 50 chemicals, on: a) oral rat and mouse LD50 values; b) acute oral lethal doses in humans; c) clinically measured acute lethal serum concentrations in humans; d) acute lethal blood concentrations in humans measured postmortem; e) peaks from curves of an approximate 50% lethal blood/serum concentration over time after ingestion (LC50 curves), derived from a compilation of human acute poisoning case reports; f) human kinetics of single doses, including absorption, peak time, distribution/elimination curve, plasma half-life, distribution volume, distribution to organs (notably brain), and blood protein binding; and g) qualitative human acute toxicity data, including lethal symptoms, main causes of death, average time to death, target organs, presence of histopathological injury in target organs, presence of toxic metabolites, and known or hypothetical mechanisms for the lethal toxicity. The rationales for selection of the human toxicity data are also noted. The methods used to compile the in vivo toxicity data are described, including a presentation of a new method of constructing LC50 curves. Finally, the merits and shortcomings of the various human toxicity data for evaluation purposes are discussed.
You need to register (for free) to download this article. Please log in/register here.

EDIT: A New International Multicentre Programme to Develop and Evaluate Batteries of In Vitro Tests for Acute and Chronic Systemic Toxicity

Björn Ekwall, Cecilia Clemedson, Barbro Ekwall, Patrik Ring and Lennart Romert

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme provided a battery of three basal cytotoxicity tests with a good (R2 = 0.77) prediction of human acute lethal blood concentrations. The predictive power of this battery would be considerably improved by the addition of new supplementary in vitro tests. The development of these new tests will be facilitated by a close coupling of test development to evaluation. The Cytotoxicology Laboratory, Uppsala (CTLU), is therefore inviting all interested in vitro toxicologists to take part in the Evaluation-guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT). All EDIT activities (subprojects) will be designed on a case-by-case basis, but will follow a common pattern. The CTLU will use the accumulated MEIC/EDIT data, and its experience from the previous MEIC evaluation, to suggest priority areas, i.e. the need for certain in vitro toxicity data/tests as supplements to existing in vitro models/batteries on human systemic toxicity. Detailed research programmes corresponding to these areas will be published on the Internet. The CTLU will also try to raise funds for some projects and will coordinate multilaboratory studies. Interested laboratories developing or already using priority tests are encouraged to join the subprojects and to test specific sets of substances (usually sets of MEIC reference chemicals) in their new assays. The CTLU will provide adequate human reference data and will also evaluate results as single components of complex models, together with the laboratory conducting the test. At present, ten priority areas have been identified: a) repeat dose toxicity in vitro; b) urgent mechanistic information from in vitro studies of protein denaturation, morphology of cell injury, differential toxicity between various rapidly measured endpoints (10–60 minutes) and 24-hour cytotoxicity, toxicity to aerobic cells, and discrimination between rapid and slow cytotoxic mechanisms; c) in vitro tests on vitally important, specific receptor toxicity in humans; d) excitatory cytotoxicity; e) reversibility of cell toxicity; f) in vitro tests on passage across the blood–brain barrier; g) in vitro tests on absorption in the gut; h) protein binding in vitro; i) in vitro tests on distribution volumes (Vd); and j) in vitro tests on biotransformation to more-toxic metabolites (hepatocytes plus target cells). This paper gives a short presentation of the rationale for each subproject and reports on ongoing activities.
You need to register (for free) to download this article. Please log in/register here.