EpiOcular

/Tag:EpiOcular

The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations:

Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes

Susanne N. Kolle, Maria Cecilia Rey Moreno, Winfried Mayer, Andrew van Cott, Bennard van Ravenzwaay and Robert Landsiede

The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury) and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations.
You need to register (for free) to download this article. Please log in/register here.

The EpiOcular Eye Irritation Test (EIT) for Hazard Identification and Labelling of Eye Irritating Chemicals: Protocol Optimisation for Solid Materials and the Results after Extended Shipment

Yulia Kaluzhny, Helena Kandárová, Yuki Handa, Jane DeLuca, Thoa Truong, Amy Hunter, Paul Kearney, Laurence d’Argembeau-Thornton and Mitchell Klausner

The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM–COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay’s sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4–5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances.
You need to register (for free) to download this article. Please log in/register here.

Comparative Evaluation of Five In Vitro Tests for Assessing the Eye Irritation Potential of Hair-care Products

Penny A. Jones, Ella Budynsky, Karen J. Cooper, Denise Decker,
Heather A. Griffiths and Julia H. Fentem

This study compared five methods, the isolated rabbit eye (IRE), bovine corneal opacity and permeability (BCOP), EpiOcular™, fluorescein leakage (FL) and neutral red release (NRR) assays, for predicting the eye irritation potential of hair-care formulations. Ten shampoo and seven conditioner formulations of known ocular irritation potential were tested. Each group included a market-acceptable formulation as a comparative benchmark. Predictions of ocular irritation were made by using classification models (IRE, BCOP and EpiOcular assays) or by direct comparison with benchmarks (IRE, EpiOcular, FL and NRR assays). The BCOP assay was less sensitive than the IRE test in discriminating between formulations of different irritation potentials, and did not perform as well as the other assays in identifying mild formulations. All of the assays appeared to be better at discriminating correctly between the shampoos than between the conditioners. The EpiOcular assay showed the closest concordance between the in vivo results and the in vitro data from cell-based assays (particularly for shampoos). The FL assay also showed a high concordance (particularly for conditioners). There was a tendency for these in vitro assays to over-predict eye irritation potential, but there was no under-prediction and they were particularly successful at identifying mild formulations. The NRR assay was less predictive with both shampoos and conditioners. The results from this comparative evaluation fully support the continued use of the IRE test as a suitable alternative to in vivo eye irritation testing in rabbits, although it also over-predicted the irritancies of several of the formulations. The value of using concurrent benchmarks (reference standards), appropriate to the materials being tested, in interpreting the data obtained from in vitro tests, was also demonstrated. Overall, the results indicate that further comparisons of the IRE, EpiOcular and FL assays are warranted using much larger numbers of test materials.
You need to register (for free) to download this article. Please log in/register here.

The MatTek Story — How the Three Rs Principles Led to 3-D Tissue Success!

John Sheasgreen, Mitch Klausner, Helena Kandárová and David Ingalls

MatTek Corporation has been working diligently for over 15 years to replace traditional animal-based toxicity and efficacy tests with alternative test methods based on human-cell derived, three-dimensional (3-D) tissue models. First discussed in detail by W.M.S. Russell and R.L. Burch 50 years ago in their book, The Principles of Humane Experimental Technique, and now fully integrated into forward-looking publications such as Toxicity Testing in the 21st Century: A Vision and a Strategy, the concept of replacing animals in test procedures with human cells and/or human cell-derived in vitro 3-D tissues is being embraced by the world’s research scientists and toxicologists at an ever-increasing rate. 3-D in vitro models are being utilised not only for humanitarian reasons, but also because human 3-D tissues, in particular, produce more-physiologically relevant scientific data. Early on in MatTek’s efforts to develop this alternative test method, senior management sought the assistance of experts within the in vitro testing and animal rights communities, to help define the specific in vitro human 3-D tissue products needed and navigate the regulatory landscape, especially in Europe where the replacement of animal-based testing with non-animal alternative test methods was well underway. MatTek was fortunate to receive that expert assistance on both fronts from Professor Michael Balls, who at that time was the newly-elected first director of ECVAM. In 1997, with the guidance and support of Professor Balls and others in the animal rights community, MatTek began the effort to validate several of its human 3-D tissue-based alternative test methods. Today, two MatTek human cell-derived 3-D tissue-based test methods are validated as full replacements for existing animal-based tests, with more tests in the validation pipeline. In addition, MatTek in vitro tissue models are in use worldwide by chemical, pharmaceutical and consumer product companies, as evidenced by citations in hundreds of patents and scientific articles from these industries. This article concludes with MatTek’s thoughts on the direction that human 3-D tissue-based in vitro testing will take in the future.
You need to register (for free) to download this article. Please log in/register here.

Development of the EpiOcular™ Eye Irritation Test for Hazard Identification and Labelling of Eye Irritating Chemicals in Response to the Requirements of the EU Cosmetics Directive and REACH Legislation

Yulia Kaluzhny, Helena Kandárová, Patrick Hayden, Joseph Kubilus, Laurence d’Argembeau-Thornton and Mitchell Klausner

The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular™ eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r2) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular’s long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants.
You need to register (for free) to download this article. Please log in/register here.