Progress in Applying the Three Rs to the Potency Testing of Botulinum Toxin Type A

Donald W. Straughan

Botulinum toxin type A (BTA) is being increasingly used for a range of therapeutic purposes and also for cosmetic reasons. For many years, the potency of BTA has been measured by using an LD50 assay in mice. This assay is a cause for concern due to its unpleasant nature and extreme severity, and the requirement for high numbers of mice to be used. Alternatives to this potency assay are presently reviewed with particular reference to the work at the National Institute for Biological Standards and Control (NIBSC), and to recent work by the UK manufacturer of the substance. An in vivo local paralysis assay with considerably less severity has been developed and is in use at the NIBSC. Alternative, ex vivo functional assays in use include the measurement of BTA-induced paralysis of neurally-stimulated rodent diaphragm or rat intercostal muscle. The latter method has the advantage of allowing more preparations to be derived from one animal. However, these ex vivo methods have not yet been fully validated and accepted by regulatory agencies as potency assays. Endopeptidase assays, although not measuring muscle paralysis directly, may provide a very useful consistency test for batch release and may replace the routine use of the LD50 test for that purpose. These assays measure the cleavage of the SNAP-25 protein (the final stage of BTA action), and have been validated for batch release by the National Control Laboratory (NIBSC), and are in regular use there. ELISA assays, used alongside the endopeptidase assay, also provide useful confirmatory information on the amounts of functional (and non-functional) BTA present. The UK manufacturer is further validating its endopeptidase assay, an ex vivo muscle assay and an ELISA. It is anticipated that their work will lead to a change in the product license, hopefully within the next two years, and will form a critical milestone towards the end of the LD50 potency test.
You need to register (for free) to download this article. Please log in/register here.

The Intercostal NMJ Assay — A New Alternative to the Conventional LD50 Assay for the Determination of the Therapeutic Potency of Botulinum Toxin Preparations

Alexander Huber, Richard M. France, Lisa Riccalton-Banks, Jane McLaren, Helen Cox, Robin A. Quirk, Kevin M. Shakesheff, David Thompson, Naveed Panjwani, Sarah Shipley and Andy Pickett

Therapeutic botulinum neurotoxin type A preparations have found an increasing number of clinical uses for a large variety of neuromuscular disorders and dermatological conditions. The accurate determination of potency in the clinical application of botulinum toxins is critical to ensuring clinical efficacy and safety, and is currently achieved by using a lethal dose (LD50) assay in mice. Ethical concerns and operational constraints associated with this assay have prompted the development of alternative assay systems that could potentially lead to its replacement. As one such alternative, we describe the development and evaluation of a novel ex vivo assay (the Intercostal Neuromuscular Junction [NMJ] Assay), which uses substantially fewer animals and addresses ethical concerns associated with the LD50 assay. The assay records the decay of force from electrically-stimulated muscle tissue sections in response to the toxin, and thus combines the important mechanisms of receptor binding, translocation, and the enzymatic action of the toxin molecule. Toxin application leads to a time-related and dose-related reduction in contractile force. A regression model describing the relationship between the applied dose and force decay was determined statistically, and was successfully tested as able to correctly predict the potency of an unknown sample. The tissue sections used were found to be highly reproducible, as determined through the innervation pattern and the localisation of NMJs in situ. Furthermore, the efficacy of the assay protocol to successfully deliver the test sample to the cellular target sites, was critically assessed by using molecular tracer molecules.
You need to register (for free) to download this article. Please log in/register here.