drug metabolism

/Tag:drug metabolism

The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status

Sandra Coecke, Vera Rogiers, Martin Bayliss, José Castell, Johannes Doehmer, Gérard Fabre, Jeffrey Fry, Armin Kern and Carl Westmoreland

In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
You need to register (for free) to download this article. Please log in/register here.

Human Hepatic Cell Cultures: In Vitro and In Vivo Drug Metabolism

María José Gómez-Lechón, Teresa Donato, Xavier Ponsoda and José V. Castell

Drug metabolism is the major determinant of drug clearance, and the factor most frequently responsible for inter-individual differences in drug pharmacokinetics. The expression of drug metabolising enzymes shows significant interspecies differences, and variability among human individuals (polymorphic or inducible enzymes) makes the accurate prediction of the metabolism of a new compound in humans difficult. Several key issues need to be addressed at the early stages of drug development to improve drug candidate selection: a) how fast the compound will be etabolised; b) what metabolites will be formed (metabolic profile); c) which enzymes are involved and to what extent; and d) whether drug metabolism will be affected directly (drug–drug interactions) or indirectly (enzyme induction) by the administered compound. Drug metabolism studies are routinely performed in laboratory animals, but they are not sufficiently accurate to predict the metabolic profiles of drugs in humans. Many of these issues can now be addressed by the use of relevant human in vitro models, which speed up the selection of new candidate drugs. Human hepatocytes are the closest in vitro model to the human liver, and they are the only model which can produce a metabolic profile of a drug which is very similar to that found in vivo. However, the use of human hepatocytes is restricted, because limited access to suitable tissue samples prevents their use in high throughput screening systems. The pharmaceutical industry has made great efforts to develop fast and reliable in vitro models to overcome these drawbacks. Comparative studies on liver microsomes and cells from animal species, including humans, are very useful for demonstrating species differences in the metabolic profile of given drug candidates, and are of great value in the judicious and justifiable selection of animal species for later pharmacokinetic and toxicological studies. Cytochrome P450 (CYP)-engineered cells (or microsomes from CYP-engineered cells, for example, Supersomes) have made the identification of the CYPs involved in the metabolism of a drug candidate more straightforward and much easier. However, the screening of compounds acting as potential CYP inducers can only be conducted in cellular systems fully capable of transcribing and translating CYP genes.
You need to register (for free) to download this article. Please log in/register here.

A Survey of Consumer Attitudes to the Supply and Use of Human Hepatocytes in the United Kingdom

Tom D.R. Lloyd, Samantha Orr and Ashley R. Dennison

Human hepatocytes are the model of choice for pharmacotoxicological studies, but their acquisition is often problematic due to ethical and logistical difficulties. The UK Human Tissue Bank is a notfor-profit organisation that acquires and processes human tissue, with a specialist interest in the isolation of human hepatocytes. A recent in-house survey of the processing of liver tissue over 1 year revealed that freshly isolated hepatocytes were underutilised due to mismatched consumer demand, despite the published need for them. We present the results of a telephone survey to investigate the reasons behind this paradox. This survey highlighted some problem areas, including “out of hours” availability of cells and personnel difficulties, but overall, demonstrated the value of such a service, with numerous researchers taking advantage of available good quality human hepatocytes. Although further work is required in optimising long-term storage protocols through cryopreservation, we have demonstrated that tissue handling of this type can be successful and beneficial to the pharmaceutical and biotechnology industries.
You need to register (for free) to download this article. Please log in/register here.

Drug Metabolism by Cultured Human Hepatocytes: How Far Are We from the In Vivo Reality?

Xavier Ponsoda, M. Teresa Donato, Gabriela Perez-Cataldo, Maria José Gómez-Lechón and José V. Castell

The investigation of metabolism is an important milestone in the course of drug development. Drug metabolism is a determinant of drug pharmacokinetics variability in human beings. Fundamental to this are phenotypic differences, as well as genotypic differences, in the expression of the enzymes involved in drug metabolism. Genotypic variability is easy to identify by means of polymerase chain reaction-based or DNA chip-based methods, whereas phenotypic variability requires direct measurement of enzyme activities in liver, or, indirectly, measurement of the rate of metabolism of a given compound in vivo. There is a great deal of phenotypic variability in human beings, only a minor part being attributable to gene polymorphisms. Thus, enzyme activity measurements in a series of human livers, as well as in vivo studies with human volunteers, show that phenotypic variability is, by far, much greater than genotypic variability. In vitro models are currently used to investigate the hepatic metabolism of new compounds. Cultured human hepatocytes are considered to be the closest model to the human liver. However, the fact that hepatocytes are placed in a microenvironment that differs from that of the cells in the liver raises the question of to what extent drug metabolism variability observed in vitro actually reflects that in the liver in vivo. This issue has been examined by investigating the metabolism of the model compound, aceclofenac (an approved analgesic/anti-inflammatory drug), both in vitro and in vivo. Hepatocytes isolated from programmed liver biopsies were incubated with aceclofenac, and the metabolites formed were investigated by HPLC. The patients were given the drug during the course of clinical recovery, and the metabolites, largely present in urine, were analysed. In vitro and in vivo data from the same individual were compared. There was a good correlation between the in vitro and in vivo relative abundance of oxidised metabolites (4´-OH-aceclofenac + 4´-OH-diclofenac; Spearman’s ρ = 0.855), and the hydrolysis of aceclofenac (diclofenac + 4´-OH-aceclofenac + 4´-OH-diclofenac; ρ = 0.691), while the conjugation of the drug in vitro was somewhat lower than in vivo. Globally, the metabolism of aceclofenac in vitro correlated with the amount of metabolites excreted in urine after 16 hours (ρ = 0.95). Overall, although differing among assays, the in vitro/in vivo metabolism data for each patient were surprisingly similar. Thus, the variability observed in vitro appears to reflect genuine phenotypic variability among the donors.
You need to register (for free) to download this article. Please log in/register here.

In Vitro Methods in the Prediction of Kinetics of Drugs: Focus on Drug Metabolism

Hannu Raunio, Päivi Taavitsainen, Paavo Honkakoski, Risto Juvonen and Olavi Pelkonen

The absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of a candidate drug influence its final clinical success. These properties have traditionally been evaluated by using various in vivo animal approaches, but recently, a number of in vitro and in silico methods have been introduced to determine key ADMET features. Basic events, such as absorption through the gut wall, binding to plasma proteins, active and passive transfer through the blood–brain barrier, and various metabolic parameters, can now be screened with rapid in vitro and computer modelling methods. The focus in this short review is on the basic in vitro and in silico methods that are used for studying the metabolism properties of new drug molecules.
You need to register (for free) to download this article. Please log in/register here.
2017-01-09T06:33:08+00:00 Tags: , , |