Draize test

/Tag:Draize test

The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations:

Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes

Susanne N. Kolle, Maria Cecilia Rey Moreno, Winfried Mayer, Andrew van Cott, Bennard van Ravenzwaay and Robert Landsiede

The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury) and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations.
You need to register (for free) to download this article. Please log in/register here.

Report on the COLIPA Workshop on Mechanisms of Eye Irritation1

Leon H. Bruner, Odile de Silva, Lesley K. Earl, Wolfgang Pape and Horst Spielmann

This report summarises the discussions of a workshop sponsored by the European Cosmetics, Toiletries and Perfumery Association (COLIPA). The workshop discussed the state-of-the-art of eye irritancy testing, and made recommendations as to the best ways in which to validate alternatives to the Draize eye irritation test. The importance of understanding the mechanisms of eye irritation, particularly when attempting to improve in vitro prediction of in vivo eye irritancy, was also emphasised.
You need to register (for free) to download this article. Please log in/register here.

The Use of Bootstrap Resampling to Assess the Variability of Draize Tissue Scores

Andrew P. Worth, and Mark T.D. Cronin

The acute dermal and ocular effects of chemicals are generally assessed by performing the Draize skin and eye tests, respectively. Because the animal data obtained in these tests are also used for the development and validation of alternative methods for skin and eye irritation, it is important to assess the inherent variability of the animal data, since this variability places an upper limit on the predictive performance that can be expected of any alternative model. The statistical method of bootstrap resampling was used to estimate the variability arising from the use of different animals and time-points, and the estimates of variability were used to determine the maximal extent to which Draize test tissue scores can be predicted.
You need to register (for free) to download this article. Please log in/register here.