Study of the Environmental Hazard Caused by the Oil Shale Industry Solid Waste

Lee Põllumaa, Alla Maloveryan, Marina Trapido, Helgi Sillak and Anne Kahru

The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of “high acute toxic hazard”, whereas aged semi-coke and most of the polluted soils were classified as of “acute toxic hazard”. Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.
You need to register (for free) to download this article. Please log in/register here.

Ammonia-containing Industrial Effluents, Lethal to Rainbow Trout, Induce Vacuolisation and Neutral Red Uptake in the Rainbow Trout Gill Cell Line, RTgill-W1

Vivian R. Dayeh, Kristin Schirmer, and Niels C. Bols

Nine samples of whole effluent from the operation of an industrial plant over the course of one year, were tested on rainbow trout for lethality and on the rainbow trout gill cell line, RTgill-W1, for metabolic activity, plasma membrane integrity, and lysosomal activity, as measured by using the alamar Blue (AB), 5-carboxyfluorescein diacetate acetoxymethyl (CFDA-AM), and neutral red (NR) assays, respectively. None of the nine samples caused a loss of plasma membrane integrity, and only two caused a transitory decline in metabolism. Three samples caused massive vacuolisation in RTgill-W1 cells, which was accompanied by increased uptake of NR, and only these three samples were lethal to the rainbow trout. The addition of ammonia to RTgill-W1 cultures also induced vacuolisation and NR uptake, with little change in plasma membrane integrity or metabolism. Subsequently, the effluent source was identified as a nitrogen product producer, and variable levels of ammonia were found in the nine samples. Three of the four samples with the highest non-ionised ammonia levels were those which were toxic to rainbow trout and which caused vacuoles in RTgill-W1 cells. The close correlation between rainbow trout-killing and RTgill-W1 vacuolisation by the effluents, suggests that vacuolisation of RTgill-W1 cells could be used to indicate effluents which would be toxic to rainbow trout as a result of their ammonia content.
You need to register (for free) to download this article. Please log in/register here.