chemical testing

/Tag:chemical testing

A Multi-faceted Approach to Achieving the Global Acceptance of Animal-free Research Methods

Jodie Melbourne, Patricia Bishop, Jeffrey Brown and Gilly Stoddart

In 2015, the PETA International Science Consortium Ltd. was awarded the Lush Training Prize for its broad approach to education and training on the effective use of human-relevant, non-animal research techniques. The prize was awarded for work that included hosting workshops and webinars, initiating in-person training sessions and developing educational resources. The Consortium works closely with industry and regulatory agencies to identify and overcome barriers to the validation and use of alternatives to animal testing, by using an approach that identifies, promotes and verifies the implementation of these methods. The Consortium's recent activities toward replacing tests on animals for nanomaterials, pesticides and medical devices, are described, as examples of projects with broad applicability aimed at large-scale regulatory change.
You need to register (for free) to download this article. Please log in/register here.

A Campaign to End Animal Testing: Introducing the PETA International Science Consortium Ltd

Gilly Stoddart and Jeffrey Brown

The successful development and validation of non-animal techniques, or the analysis of existing data to satisfy regulatory requirements, provide no guarantee that this information will be used in place of animal experiments. In order to advocate for the replacement of animal-based testing requirements, the PETA International Science Consortium Ltd (PISC) liaises with industry, regulatory and research agencies to establish and promote clear paths to validation and regulatory use of non-animal techniques. PISC and its members use an approach that identifies, promotes and verifies the implementation of good scientific practices in place of testing on animals. Examples of how PISC and its members have applied this approach to minimise the use of animals for the Registration, Evaluation, Authorisation and Restriction of Chemicals regulation in the EU and testing of cosmetics on animals in India, are described.
You need to register (for free) to download this article. Please log in/register here.

The Application of Normal, SV40 T-antigen-immortalised and Tumour-derived Oral Keratinocytes, under Serum-free Conditions, to the Study of the Probability of Cancer Progression as a Result of Environmental Exposure to Chemicals

Rebecca Ceder, Marina Merne, Claudia A. Staab, Jan Anders Nilsson, Jan-Olov Höög, Dirk Dressler, Karin Engelhart and Roland C. Grafström

In vitro models are currently not considered to be suitable replacements for animals in experiments to assess the multiple factors that underlie the development of cancer as a result of environmental exposure to chemicals. An evaluation was conducted on the potential use of normal keratinocytes, the SV40 T-antigen-immortalised keratinocyte cell line, SVpgC2a, and the carcinoma cell line, SqCC/Y1, alone and in combination, and under standardised serum-free culture conditions, to study oral cancer progression. In addition, features considered to be central to cancer development as a result of environmental exposure to chemicals, were analysed. Genomic expression, and enzymatic and functional data from the cell lines reflected many aspects of the transition of normal tissue epithelium, via dysplasia, to full malignancy. The composite cell line model develops aberrances in proliferation, terminal differentiation and apoptosis, in a similar manner to oral cancer progression in vivo. Transcript and protein profiling links aberrations in multiple gene ontologies, molecular networks and tumour biomarker genes (some proposed previously, and some new) in oral carcinoma development. Typical specific changes include the loss of tumour-suppressor p53 function and of sensitivity to retinoids. Environmental agents associated with the aetiology of oral cancer differ in their requirements for metabolic activation, and cause toxic effects to cells in both the normal and the transformed states. The results suggest that the model might be useful for studies on the sensitivity of cells to chemicals at different stages of cancer progression, including many aspects of the integrated roles of cytotoxicity and genotoxicity. Overall, the properties of the SVpgC2a and SqCC/Y1 cell lines, relative to normal epithelial cells in monolayer or organotypic culture, support their potential applicability to mechanistic studies on cancer risk factors, including, in particular, the definition of critical toxicity effects and dose–effect relationships.
You need to register (for free) to download this article. Please log in/register here.

The Way Forward in Reproductive/Developmental Toxicity Testing

Horst Spielmann

The use of experimental animals in reproductive toxicity testing is critically reviewed on the occasion of the 50th anniversary of the publication of the Three Rs concept by Russell and Burch, since there is major concern that reproductive toxicity testing will significantly increase due to the requirements of the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system. A comparison of the test guidelines for drugs, agrochemicals and industrial chemicals shows that, for historical reasons, significantly different testing strategies are applied. The current status of development and validation of in vitro tests in reproductive toxicology is also critically evaluated. The mouse embryonic stem cell test (mEST) is the most advanced and promising of the in vitro tests. Although it has not yet been accepted for regulatory purposes, its use in preclinical drug development is well established. Moreover, promising molecular endpoints have been established in the mEST, including proteomic and toxicogenomic endpoints. Preliminary results have been obtained with a human EST (hEST). In addition, an overview is given on new in vitro reproductive toxicity tests that are currently being developed in the EU FP6 project, ReProTect, since the ReProTect test battery, which covers the essential steps of female and male fertility, implantation and embryotoxicity, holds promise for use as a screening assay for reproductive toxicity testing according to the EU REACH legislation. However, since validated in vitro methods will not be available in the short term, opportunities for the refinement of the standard in vivo tests are discussed, in order to reduce the numbers of animal used in reproductive toxicity testing. Finally, recommendations for toxicity testing in the 21st century call for the harmonisation of test methods across all areas of regulatory testing as a first step. Since the REACH system testing framework for industrial chemicals is driven by the reproductive safety testing requirements of agrochemicals, a shift is proposed to exposure-driven testing of industrial chemicals. In particular, the implementation of a new ‘extended one-generation reproductive toxicity study’ (EOGRTS), which includes triggers for additional testing for fertility, developmental neurotoxicity and immunotoxicity, would significantly reduce test animal numbers. It is concluded that in vitro methods hold great promise for reproductive toxicity testing in the 21st century, e.g. the ReProTect in vitro battery and the embryonic stem cell (ESC) technology focusing on molecular endpoints in both the mEST and the hEST.
You need to register (for free) to download this article. Please log in/register here.