ammonia

/Tag:ammonia

Short-term Toxicity of Various Pharmacological Agents on the In Vitro Nitrification Process in a Simple Closed Aquatic System

Herman Nimenya, Annie Delaunois, Duc La Duong, Serge Bloden, Jean Defour, Baudouin Nicks and Michel Ansay

During the treatment of fish diseases, drugs which inhibit the nitrification process can cause acute ammonia toxicity. The same phenomenon can occur when fish are put into a tank without active cultures of nitrifying bacteria. The purpose of this study was to quantify the inhibitory effects of 15 pharmacological agents, which are often used as therapeutic agents in ichthyopathology, on ammonia removal and nitrate production in a simple closed aquatic system. The experiments were conducted in polyethylene bags containing activated biofilters and synthetic water solutions, held in a water bath. Ammonia was added to initiate the nitrification process, and graded concentrations of various pharmacological agents were added. The effects of the pharmacological agents on in vitro nitrification were assessed by monitoring ammonia and nitrate concentrations compared to controls with no added agents, for 24 hours. Graded concentrations of ampicillin (Albipen®), chloramine T, enrofloxacin (Baytril®), erythromycin, levamisole, methylene blue and polymyxin B induced dose-dependent inhibitions of ammonia removal and nitrate production. The corresponding linear regression curves showed high correlation coefficients and were highly significant (p < 0.05). The addition of chloramphenicol, copper (II) sulphate, kanamycin disulphate, malachite green, neomycin sulphate, potassium penicillin G, tetracycline and a mixture of trimethoprim and sulphadoxin (DuoprimTM) had no significant effects on the nitrification process. A significant dose-related inhibition of nitrate production, but not of ammonia oxidation, was observed with enrofloxacin. The significant correlation (r = 0.940; p < 0.001) between the degrees of inhibition of ammonia oxidation and nitrate production for the various inhibitory pharmacological agents has also been calculated, with a view to validating this method. The data presented suggest that separate tank facilities for hospitalisation or quarantine are necessary when treating diseased fish with ampicillin, enrofloxacin, chloramine T, erythromycin, levamisole, methylene blue or polymyxin B, in order to avoid ammonia poisoning.[/fusion_toggle] [/fusion_builder_column][fusion_builder_column row_column_index="1_2" type="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" spacing="yes" background_image="" background_repeat="no-repeat" padding="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="no" center_content="no" min_height="none"][s2If current_user_cannot(access_s2member_level0)] You need to register (for free) to download this article. Please log in/register here.[/s2If]

Ammonia-containing Industrial Effluents, Lethal to Rainbow Trout, Induce Vacuolisation and Neutral Red Uptake in the Rainbow Trout Gill Cell Line, RTgill-W1

Vivian R. Dayeh, Kristin Schirmer, and Niels C. Bols

Nine samples of whole effluent from the operation of an industrial plant over the course of one year, were tested on rainbow trout for lethality and on the rainbow trout gill cell line, RTgill-W1, for metabolic activity, plasma membrane integrity, and lysosomal activity, as measured by using the alamar Blue (AB), 5-carboxyfluorescein diacetate acetoxymethyl (CFDA-AM), and neutral red (NR) assays, respectively. None of the nine samples caused a loss of plasma membrane integrity, and only two caused a transitory decline in metabolism. Three samples caused massive vacuolisation in RTgill-W1 cells, which was accompanied by increased uptake of NR, and only these three samples were lethal to the rainbow trout. The addition of ammonia to RTgill-W1 cultures also induced vacuolisation and NR uptake, with little change in plasma membrane integrity or metabolism. Subsequently, the effluent source was identified as a nitrogen product producer, and variable levels of ammonia were found in the nine samples. Three of the four samples with the highest non-ionised ammonia levels were those which were toxic to rainbow trout and which caused vacuoles in RTgill-W1 cells. The close correlation between rainbow trout-killing and RTgill-W1 vacuolisation by the effluents, suggests that vacuolisation of RTgill-W1 cells could be used to indicate effluents which would be toxic to rainbow trout as a result of their ammonia content.
You need to register (for free) to download this article. Please log in/register here.