Adverse Outcome Pathway

/Tag:Adverse Outcome Pathway

Nrf2 Activation as a Key Event Triggered by Skin Sensitisers: The Development of the Stable KeratinoSens Reporter Gene Assay

Andreas Natsch and Roger Emter

The 21st century paradigm for toxicology and the adverse outcome pathway concept envisage a future toxicology largely based on mechanistic in vitro assays and relying mainly on cellular models. In the skin sensitisation field, this concept was not intuitive at the beginning. Given the high structural diversity of skin sensitising molecules, classical receptor binding as the molecular initiating event in a cell-based assay could be excluded from the start, leaving the question of how cells could sense potential skin sensitising chemicals and be able to differentiate them from non-sensitisers. When we entered this field in 2006, we realised that, in another emerging field of toxicology, detailed work on the antioxidant/electrophile sensing pathway Keap1/Nrf2/ARE was being performed. We postulated that, based on their intrinsic electrophilicity, a large structural variety of skin sensitisers would activate this pathway. This was demonstrated in a preliminary pilot study with an existing, breast cancer-derived reporter cell line. Broader confirmation of this initial hypothesis then came from a multitude of genome-wide studies, in which sensitiser-induced changes to the transcriptome were investigated. The results showed that this regulatory pathway is indeed the most common regulatory pathway activated by sensitisers at the gene expression level, and the underlying event in keratinocytes has become formalised as a Key Event in the Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway for sensitisation. These studies led to the development of the KeratinoSens® assay, which became the first cell-based in vitro test for skin sensitisation to be endorsed by a European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) statement and an OECD Test Guideline. More recently, a number of studies have further developed this approach into 3-D skin models. Here, we review the underlying mechanism and the development of the KeratinoSens assay. We also present data on the stability of the assay over time, which is a key requirement for a cell-based biological assay to be endorsed in a regulatory context.
You need to register (for free) to download this article. Please log in/register here.

The Adverse Outcome Pathway for Skin Sensitisation: Moving Closer to Replacing Animal Testing

Terry W. Schultz, Gergana Dimitrova, Sabcho Dimitrov and Ovanes G. Mekenyan

This article outlines the work of the Organisation for Economic Co-operation and Development (OECD) that led to being jointly awarded the 2015 Lush Black Box Prize. The award-winning work centred on the development of 'The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins'. This Adverse Outcome Pathway (AOP) has provided the mechanistic basis for the integration of skin sensitisation-related information. Recent developments in integrated approaches to testing and assessment, based on the AOP, are summarised. The impact of the AOP on regulatory policy and on the Three Rs are discussed. An overview of the next generation of the skin sensitisation AOP module in the OECD QSAR Toolbox, based on more-recent work at the Laboratory of Mathematical Chemistry, is also presented.
You need to register (for free) to download this article. Please log in/register here.

Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of ‘Omics’ Data from Human Cell Cultures

Roland C. Grafström, Penny Nymark, Vesa Hongisto, Ola Spjuth, Rebecca Ceder, Egon Willighagen, Barry Hardy, Samuel Kaski and Pekka Kohonen

This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of ‘omics’ technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a ‘data warehouse’ that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple ‘omics’ technologies. The prize winners’ guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material testing data, to information relevant to human health and environmental safety.
You need to register (for free) to download this article. Please log in/register here.

Development of an In Silico Profiler for Respiratory Sensitisation

Steven J. Enoch, David W. Roberts, Judith C. Madden and Mark T.D. Cronin

In this article, we outline work that led the QSAR and Molecular Modelling Group at Liverpool John Moores University to be jointly awarded the 2013 Lush Science Prize. Our research focuses around the development of in silico profilers for category formation within the Adverse Outcome Pathway paradigm. The development of a well-defined chemical category allows toxicity to be predicted via read-across. This is the central approach used by the OECD QSAR Toolbox. The specific work for which we were awarded the Lush Prize was for the development of such an in silico profiler for respiratory sensitisation. The profiler was developed by an analysis of the mechanistic chemistry associated with covalent bond formation in the lung. The data analysed were collated from clinical reports of occupational asthma in humans. The impact of the development of in silico profilers on the Three Rs is also discussed.
You need to register (for free) to download this article. Please log in/register here.

Humane Society International’s Global Campaign to End Animal Testing

Troy Seidle

The Research & Toxicology Department of Humane Society International (HSI) operates a multifaceted and science-driven global programme aimed at ending the use of animals in toxicity testing and research. The key strategic objectives include: a) ending cosmetics animal testing worldwide, via the multinational Be Cruelty-Free campaign; b) achieving near-term reductions in animal testing requirements through revision of product sector regulations; and c) advancing humane science by exposing failing animal models of human disease and shifting science funding toward human biology-based research and testing tools fit for the 21st century. HSI was instrumental in ensuring the implementation of the March 2013 European sales ban for newly animal-tested cosmetics, in achieving the June 2013 cosmetics animal testing ban in India as well as major cosmetics regulatory policy shifts in China and South Korea, and in securing precedent-setting reductions in in vivo data requirements for pesticides in the EU through the revision of biocides and plant protection product regulations, among others. HSI is currently working to export
these life-saving measures to more than a dozen industrial and emerging economies.
You need to register (for free) to download this article. Please log in/register here.

Adverse Outcome Pathway-based Screening Strategies for an Animal-free Safety Assessment of Chemicals

Brigitte Landesmann, Milena Mennecozzi, Elisabet Berggren and Maurice Whelan

Currently, the assessment of risk to human health from exposure to manufactured chemicals is mainly based on experiments performed on living animals (in vivo). Substantial efforts are being undertaken to develop alternative solutions to in vivo toxicity testing. This new paradigm, based on the Mode-of-Action (MoA) framework, postulates that any adverse human health effect caused by exposure to an exogenous substance can be described by a series of causally-linked biochemical or biological key events with measurable parameters. The elaboration of mechanistic knowledge through literature research is necessary for a MoA-driven design of integrated testing strategies using in vitro methods for in vivo predictions. The objective of our ongoing research is to demonstrate the feasibility of an integrated approach to predict human toxicity following the Adverse Outcome Pathway (AOP) framework. In our previous work on MoA with the HepaRG cell model, we developed a strategy to identify chemicals that were hepatotoxic. This pioneered an innovative way of using data from in vitro experiments to group chemicals based on their MoA, which is likely to be an important step in a toxicity testing strategy.
You need to register (for free) to download this article. Please log in/register here.